
Testing a Rotation Axis to Drain a 3D Workpiece

Yusuke Yasui, Sara McMains

University of California, Berkeley

Abstract

Given a triangular mesh defining the geometry of a 3D workpiece filled
with water, we propose an algorithm to test whether, for an arbitrary given
axis, the workpiece will be completely drained under gravity when the rota-
tion axis is set parallel to the ground and the workpiece is rotated around the
axis. Observing that all water traps contain a concave vertex, we solve our
problem by constructing and analyzing a directed “draining graph” whose
nodes correspond to concave vertices of the geometry and whose edges are
set according to the transition of trapped water when we rotate the workpiece
around the given axis. Our algorithm to test whether or not a given rotation
axis drains the workpiece outputs a result in about a second for models with
more than 100,000 triangles after a few seconds of preprocessing.

Keywords:
draining, rotation axis, directed graph, water traps, cleanability,
manufacturing

1. Introduction

Cleaning engine components to remove hard particle contaminants intro-
duced during the manufacturing process is becoming a significant issue for
industry [1, 2, 3]. Manufacturing byproducts such as chips from machining
and sand from casting are commonly cleaned off the surfaces of workpieces
using high pressure water-jets. However, if the workpiece has complicated
concave regions, the cleaning water may not easily drain from the workpiece.
In order to minimize the subsequent draining time, our industrial partner
first mounts workpieces on a slowly rotating carrier so that gravity can drain
out as much water as possible. Their current set-up rotates in one direction
(either clockwise or counterclockwise) around a single axis oriented parallel
to the ground.

Preprint submitted to Computer-Aided Design June 1, 2010

Figure 1: The choice of a rotation axis matters to drain trapped water. (a)
A workpiece geometry and its cross section (b) A rotation axis relative to the
workpiece that can drain the trapped water. (c) A rotation axis relative to
the workpiece that cannot drain the trapped water.

The choice of a rotation axis determines whether trapped water will drain.
Figure 1 illustrates an example. Given a workpiece geometry we would like
to drain (Figure 1 (a)) and a rotation axis set parallel to the ground, if we
initially choose a rotation axis relative to the workpiece as shown in Figure
1 (b), we can drain the trapped water. On the other hand, if we choose a
rotation axis relative to the workpiece as shown in Figure 1 (c), we cannot
drain the trapped water.

Our ultimate goal is to find a rotation axis for a given workpiece geometry
such that when the workpiece is first oriented with this axis parallel to the
ground and then rotated slowly around the axis, all water drains from all
voids of the workpiece. As a first step toward this goal, we propose an algo-
rithm to test whether or not clockwise or counterclockwise rotation around
a given axis in 3D space can drain all trapped water from a workpiece whose
geometry is represented as a triangulated mesh.

1.1. Related Work

The most straightforward approach to solve this problem might be using a
general-purpose physics based approach such as computational fluid dynam-
ics (CFD). Although the power of computers is increasing every year, the
computational cost of such a physics-based approach is still too expensive to
be suitable for applications that require interactivity. Since we would like to
provide interactive feedback to designers, we need a real-time algorithm that
does not rely on a computationally expensive method that can take hours to
converge.

2

In the computer graphics community, several efforts have been made to
accelerate algorithms borrowed from computational sciences while maintain-
ing plausibility [4]. The first real-time GPU (Graphics Processing Unit)
implementation of fluid simulation using a regular grid of cubical cells was
reported in [5]. Unfortunately, because the algorithm accuracy is dependent
on the 3D grid resolution, it is not appropriate for our complex target ge-
ometries since we would be required to split space into a tremendous number
of grid cells to perform the simulation reliably. To avoid this issue, particle-
based approaches using smoothed particle hydrodynamics (SPH) are popu-
lar for real-time simulations since they do not require a grid throughout the
whole domain [6, 7]. Although particle systems can produce attractive visual
results, they cannot match the accuracy of fluid simulation unless the num-
ber of the simulated particles is very high, but when the number of particles
increase, the performance suffers.

Since performing physics-based simulation in realtime on complicated ge-
ometry is still challenging, and we do not care about the full details of the
fluid flow, only whether or not the workpiece drains completely, we are mo-
tivated to devise an algorithm to solve our problem geometrically to reduce
computational cost. It combines analysis of (free) fluid flow and accessibility
from a geometric perspective.

In the case of fluid flows inside complex geometric models, a similar prob-
lem, considering the problem of draining water (a single particle) out of a
closed polygon by rotating the shape in 2D space, was introduced by Aloupis
et al. [8]. Given a closed polygon and a trapped water particle inside of it,
they proposed an algorithm to find how many holes must be punctured to
drain them. Letting n be the number of vertices of a given polygon, they
showed that bn/6c holes are sometimes necessary and dn/4e holes are suffi-
cient to drain any polygon. Then, they proposed an O(n2 log n) algorithm
to find the minimum number of holes needed to drain.

Geometric analysis has been developed to study flow of liquid in a mold
as well. Bradley and Heinemann [9] proposed geometric analysis of the mold
to develop shape factors indicating the effect of the geometry of the mold on
fluid flow under gravity. Bose et al. [10] considered the problem of filling a
mold from a purely geometric perspective in 3D space such that, when it is
filled, no air pockets and ensuing surface defects arise. They proposed a linear
time algorithm to check whether a given polyhedron can be completely filled
without forming air pockets in a fixed orientation. They also proposed an
O(n2) algorithm to find the most favorable orientation for a given polyhedron.

3

Figure 2: We assume that we can approximate a volume of water (shown
in (a) for a 2D example) by a set of water particles (shown in (b)). A water
trap is a set of water particles directly or indirectly touching each other and
some of which are touching the input geometry. In this example, two water
traps are formed.

A similar problem to ours arises in planning for 4-axis NC machining,
how to find a rotation axis that maximizes “visible” surface in a single setup,
which was investigated by Tang et al. [11]. Generally speaking, to manu-
facture a desired shape, multiple setups are required; however, the setup is
time-consuming and therefore the number of setups should be minimized.
To consider this problem, visibility plays a vital role. Woo developed the
concept of visibility maps to represent and compute accessibility [12].

1.2. Assumptions and a Key Observation

We assume that we can approximate a volume of water by a set of water
particles whose viscosity is negligibly small. We also assume that the rota-
tion is slow enough so that the water particles reach equilibrium for each
orientation through which we rotate, and that the particles move only under
the effect of gravity (assuming that any other phenomena such as friction or
centrifugal force are negligible).

We define a water trap in a particular orientation as a connected volume
of undrained water, which we approximate by a set of water particles directly
or indirectly touching each other (Figure 2).

The key observation for our problem is that, for each water trap, there is
always at least one concave vertex of the input mesh such that some of its
incident edges and faces are touching water particles constituting the water
trap. Based on this observation, our goal is to drain all the concave vertices
of an input mesh since this is equivalent to draining all water traps from all
voids of the workpiece.

4

Figure 3: (a): Concave vertex v (b): The diagram showing Tv of v.

In the next section, we describe an overview of our approach, going
through a 2D example to introduce our directed draining graph method.
Then, in sections 3 and 4, we describe how we actually construct and ana-
lyze the draining graph for a 3D geometry and arbitrary 3D rotation axis. In
sections 5-8, we present results, complexity analysis, discussion and future
work, and conclusions, respectively.

2. Approach and Theory

To begin, we discuss a simplified case using a 2D example.

2.1. Simplified case: each water trap is represented by a single water particle

First, we consider the case that each water trap consists of only one water
particle. Recall that a water trap can only be formed at a concave vertex.

For each concave vertex v, we consider gravity directions such that, if
a water particle is at v, it will be trapped. In the 2D case, any gravity
direction can be described as a point on the Gaussian circle (a circle whose
radius is one and center is at the origin). When we rotate a workpiece,
the gravity direction moves relative to the workpiece along the Gaussian
circle. For each concave vertex v, we define a space Tv on the Gaussian circle
consisting of gravity directions such that, if a water particle is at v, it will
be trapped. Figure 3 shows a specific example. In the 2D case, each of the
two gravity directions gv(CCW) and gv(CW) bounding Tv are orthogonal to
the two edges incident to v. We define g∗v(CCW) as a point on the Gaussian
circle that is not in Tv and is closest to gv(CCW). In a similar manner, we
define g∗v(CW) as a point on the Gaussian circle that is not in Tv and is closest
to gv(CW). For a workpiece orientation with corresponding gravity direction

5

relative to the workpiece currently in Tv, when the workpiece rotates far
enough that the gravity direction relative to the workpiece coincides with
g∗v(CCW) (respectively, g∗v(CW)), the trapped water particle leaves v and moves

along the edge towards A (respectively, B).
We construct a directed draining graph whose nodes correspond to the

concave vertices. Each node has two kinds of outgoing edges, for clock-
wise and counterclockwise rotation, that point to the nodes representing the
concave vertices where the trapped water will ultimately settle when the
workpiece is rotated clockwise and gravity coincides with g∗v(CW) or counter-
clockwise and gravity coincides with g∗v(CCW). If the water particle trapped at
a vertex exits the workpiece once it is rotated so that gravity coincides with
g∗v(CW) or g∗v(CCW), the corresponding edge is set to point to a node labeled
“out” representing the workpiece exterior. An example of a draining graph
for a 2D geometry is shown in Figure 4.

The draining graph is constructed as follows. For each concave vertex, we
initialize a corresponding node in the draining graph. Then, we compute the
two gravity directions when a water particle trapped at the concave vertex
leaves it under clockwise and counterclockwise rotation. These gravity direc-
tions (the bounds of Tv) are shown in a diagram next to each node in Figure
4 (a). Finally, we trace the path of a trapped water particle under both
of these gravity direction to determine in what concave vertex it settles for
each, adding a graph edge labeled as CW or CCW that points to the corre-
sponding node. Figure 4 (b)-(g) show the paths a water particle takes under
gravity from each concave vertex for the geometry shown in Figure 4 (a).

The destination is not necessarily unique since there may be multiple
possible paths a water particle takes under gravity. Figure 4 (e) shows one
such example. A water particle leaving concave vertex D with g∗D(CW) may
settle at concave vertex E or exit the workpiece. In this case, we assume
that a particle splits into two particles.

For each concave vertex, if there is some path consisting of edges with
the same direction label from the corresponding node to the node labeled
as “out,” then we can eventually drain the water particle trapped at that
concave vertex through concave vertices corresponding to the nodes along the
path by rotating in the given direction. For example, suppose a water particle
is trapped at concave vertex A, there is a path “A → B → C → D → out”
in Figure 4 corresponding to the draining sequence shown in the top row
of Figure 5. Since there is an edge from D not only to “out” but also to

6

Figure 4: (a) A sample geometry in 2D and the corresponding draining
graph. The diagram next to each graph node shows the two gravity directions
g∗v(CW) and g∗v(CCW) that let a water particle trapped at the corresponding
concave vertex leave for the other concave vertices. For each node, when a
current gravity direction is in Tv, if a water particle is at the corresponding
concave vertex, it will be trapped. (b)-(g) Paths a water particle takes from
each concave vertex under g∗v(CW) (blue) and g∗v(CCW) (orange).

7

Figure 5: (a) The transition and draining of a water particle trapped at con-
cave vertex A by clockwise rotation. As we continue to rotate the geometry,
the volume of the trapped particle gradually decreases and becomes negligibly
small.

Figure 6: We cannot drain a water particle trapped at concave vertex A by
counterclockwise rotation.

E, the water particle splits into two smaller particles and only one of them
will be drained through the sequence. But as we can see in Figure 4, there
is a path from E to “out” as well (“E → F → B → C → D → out”);
therefore, the other smaller particle going to E will come back to D, split
into two further smaller particles, and one of them will be drained. For
each 360-degree rotation, the volume of the remaining trapped water particle
decreases (Figure 5). When the volume of the remaining particle becomes
negligibly small, we deem that the trapped water particle is drained. As we
have seen through the example, as long as there is a path from each node

8

to the “out” node in the draining graph, the volume of the remaining water
particles gradually decreases and will be drained eventually after rotating
enough times.

On the other hand, if there are nodes that do not have a consistently
labeled path to “out,” we can never drain their trapped water particles. For
example, for a water particle trapped at A in the geometry shown in Figure
4, we cannot drain the water particle by counterclockwise rotation, because
it just returns to A after each rotation, as shown in Figure 6. This also holds
for counterclockwise rotation when a water particle is trapped at B, C, or D.
In the draining graph, there is no CCW path from the nodes corresponding
to any of these vertices to “out.”

There is also a path “A → D → out.” But we cannot drain using this
path because it corresponds to counterclockwise rotation from A to D and
clockwise rotation from D to out. This violates our restriction that we can
rotate around an axis in one direction only.

2.2. General case: each water trap is represented by a set of water particles

In the previous subsection, we took as our premise the case that each
water trap consists of only one water particle, and provided the approach to
solve the corresponding draining problem. We now show that if a solution
exists for this case, it is also a solution for the general draining problem; that
is, the case that each water trap consists of a set of water particles.

Suppose a water trap is currently formed at concave vertex v. For the
general draining problem, after v is drained, not all the water particles con-
stituting the original water trap will necessarily form a new water trap at the
same concave vertex (see Figure 7); however, the key observation is that the
last water particle to leave the concave vertex (we call this last particle the
core particle of the water trap) moves in the same manner as a water particle
approximating the water trap by only one particle. For example, suppose
that a water trap is currently formed at a given concave vertex v as shown in
Figure 7(a). Figure 7(b) shows draining when we approximate a water trap
by only one particle and (c) shows draining when we approximate a water
trap by a set of particles (general case). In the general case, when we start to
rotate an input geometry, water particles constituting the water trap start to
leave v and form another water trap at a different concave vertex (or may exit
the geometry). As we continue to rotate, when one of the edges incident to v
becomes perpendicular to the gravity direction (i.e. parallel to the ground),
the core particle of the water trap leaves v. As shown in Figure 7 (c), at the

9

point when v is completely drained, water particles constituting the original
water trap may constitute different water traps after a rotation; however, the
core particle moves in the same manner as a water particle approximating a
water trap by only one particle.

Now we show that the approach using the draining graph for the single-
particle case works for general draining problems, too, assuming we rotate
enough times. To see this, let us consider a simple example of a draining
graph with only 4 nodes, A, B, C, and out, with three CW directed edges
“C → B → A → out” such that a single water particle trapped at C is
drained through B and A with one 360-degree rotation. Now we consider
the general case for this example. For each 360-degree clockwise rotation,
at least a core particle at A is drained (note that there is no guarantee that
all the water particles at A exit the geometry). If there are remaining water
particles (water traps), each of them exists at B or C because a water trap is
always formed at a concave vertex. There is a path from C to B; therefore,
a core particle at C goes to B if a water trap is formed at C. There is a path
from B to A; therefore, a core particle at B goes to A if a water trap is formed
at B. This implies that as long as there are remaining water particles, one of
them must become a core particle at A and be drained in each 360-degree
rotation. The number of trapped water particles never increases; therefore,
as long as there are CW or CCW paths from all nodes to out, eventually
all the particles will be drained. This holds no matter how complicated the
draining graph becomes.

3. Graph Construction

In the previous section, we have shown that we can solve the general
draining problem by considering the case that each water trap consists of
a single water particle and the corresponding transitions using a draining
graph. In this section, given a 3D geometric model and arbitrary 3D rotation
axis as input, we explain how we construct the corresponding draining graph.

3.1. Graph Nodes

The first step in constructing a draining graph is to determine its nodes,
that is, to find the concave vertices. Although water traps in 3D (unlike in
2D) may also contain concave edges, in order for the concave edge to hold
water, one of its endpoints must also be a concave vertex. Therefore, it is

10

Figure 7: (a) A water trap is formed at concave vertex v. (b) The movement
of a water particle when we approximate the water trap by only one particle.
After v is drained, a new water trap is formed at concave vertex Q. (c) The
movement of water particles when we approximate the water trap by a set of
particles. After v is drained, new water traps are formed at P and Q. The
core particle shown in red settles at a water trap at the same concave vertex
where the particle in case (b) settles.

still sufficient to consider only the draining of concave vertices, since draining
all concave vertices will drain all water traps.

We define a concave vertex for a 3D geometry as follows. Given a vertex
v, letting vale(v) be its valence, we check if there is a unit vector d such that,
for all the adjacent vertices wi of v (i = 1, 2, · · · , vale(v)), (wi − v) · d < 0
(i.e. v is a locally extreme vertex). If there is such a d and a point p = v + εd
(ε is a positive infinitesimal number) is inside of the given geometry, v is a
concave vertex. Otherwise, v is not a concave vertex.

3.2. Graph Edges

Edges of a draining graph are set according to the transitions of water
particles when the geometry is rotated around a given rotation axis. Let
Vc be the set of concave vertices. First, for each concave vertex v ∈ Vc, we
describe all gravity directions such that a water particle could be trapped
at v. Then, we explain how to find the two gravity directions (g∗v(CW) and

g∗v(CCW)) at which a trapped water particle at v flows out when rotating
clockwise or counterclockwise around the given axis. After finding these two
gravity directions, for each of them, we find the concave vertices into which

11

Figure 8: (a) concave vertex v. (b) ei and the corresponding Hi. Gravity
direction ga never causes a water trap at v, but gb may cause a water trap at
v. (c) The cross section of (b) including ga and gb.

Figure 9: (a) concave vertex v. (b) The corresponding Hi and Tv.

water particles flowing out will settle by tracing the particle’s path along
geometric features (vertices, edges, and triangles).

3.2.1. Gravity directions causing a water trap at a concave vertex

In this subsection, we describe all gravity directions such that a water
particle may be trapped at v, representing the gravity directions as points
on the Gaussian sphere (a sphere whose radius is one and center is at the
origin).

For each concave vertex v ∈ Vc, let wi be a member of the set of adjacent
vertices of v and let ei be the vector from v to wi (i.e. ei = wi−v) (see Figure
8(a)). For each ei, we define a half-space Hi of directions on the Gaussian
sphere Hi = {p | ei · p ≤ 0, ‖p‖ = 1}. Figure 8(b) shows a specific example.
A gravity direction not in Hi does not cause a water trap at v. On the other
hand, a gravity direction in Hi drags a water particle in the direction from
wi to v and may cause a water trap at v. For example, in Figure 8(b) and

12

Figure 10: We describe any rotation axis relative to workpiece geometry
r = (rx, ry, rz) by two variables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦)
where θ is the azimuthal angle in the xz-plane from the z-axis and φ is the
polar angle from the xz-plane.

(c), the gravity direction ga never causes a water trap at v, but gb may cause
a water trap at v.

We define the space Tv in 3D as Tv =
⋂

i Hi (see Figure 9). Then, a
gravity direction g in Tv potentially causes a water trap at v. On the other
hand, since for the complement of Tv, Tv, we have Tv =

⋂
i Hi =

⋃
i Hi,

therefore g in at least one of Hi does not cause a water trap at v.
To construct the draining graph, we need to determine, for each concave

vertex v ∈ Vc, in which gravity directions the currently trapped water particle
at v flows out when rotating clockwise and counterclockwise rotation around
the given axis. These gravity directions correspond to points in Tv adjacent
to the boundary of Tv.

To find these gravity directions, given a rotation axis, we always choose
the coordinate system such that the rotation axis coincides with the z-axis.
Then, possible gravity directions are confined in the xy-plane because a grav-
ity direction and the rotation axis are always orthogonal. In this configura-
tion, any gravity direction g can be expressed as a point on a unit circle in
the xy-plane with center (0, 0) (i.e. x2 + y2 = 1). This xy-plane Gaussian
circle is the intersection between the Gaussian sphere and the xy-plane.

We can describe any rotation axis relative to workpiece geometry r =
(rx, ry, rz) by two variables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where
θ is the azimuthal angle in the xz-plane from the z-axis and φ is the polar
angle from the xz-plane as shown in Figure 10. Using these parameters,
the components of r can be expressed as rx = cos φ sin θ, ry = sin φ, and

13

Figure 11: (a) The relationship between the Gaussian sphere and the xy-
plane Gaussian circle. (b) The relationship between Hi and Hi(xy). (c) The
relationship between Tv and Tv(xy).

rz = cos φ cos θ. Then, by multiplying each vertex by the matrix R where

R =




cos θ 0 − sin θ
− sin θ sin φ cos φ − cos θ sin φ
sin θ cos φ sin φ cos θ cos φ


 ,

we can set the coordinate system such that a given rotation axis coincides
with the z-axis.

Rotating the input geometry around the rotation axis is equivalent to fix-
ing the geometry and moving the gravity direction on the xy-plane Gaussian
circle. Given v ∈ Vc, suppose that a gravity direction g is currently in Tv and
a water particle is trapped at v. As we move g on the Gaussian circle, when
g passes through the boundary of Tv, the trapped water particle at v flows
out. If Tv does not intersect with the xy-plane, water is never trapped at v
with the given rotation axis.

As shown in Figure 9(b), Tv is bounded by a set of great circular arcs
on the Gaussian sphere. If Tv is intersected by the xy-plane, it intersects its
boundary at two points because Tv is convex. Since Tv =

⋂
i Hi, each of the

arcs is defined by the boundary of an Hi.
For the actual calculation to find the gravity directions where trapped wa-

ter flows out, we do not have to construct Tv in its entirety since the gravity
directions are confined in the xy-plane; constructing the portion of Tv inter-
secting with the xy-plane is sufficient. Call this portion of Tv defined on the

14

Figure 12: (a) gv(CW), gv(CCW), and Tv(xy) on the Gaussian circle. Four
cases of updating gv(CW), gv(CCW), and Tv(xy) when a new Hi(xy) is introduced
are shown in (b)-(e).

xy-plane Gaussian circle Tv(xy) (see Figure 11). Each of the boundary points
of Tv(xy) is defined by the intersection between the xy-plane Gaussian circle
and the boundary of one of the Hi because Tv(xy) =

⋂
i Hi(xy), where Hi(xy) is

the intersection between Hi and the xy-plane 1. Appendix A describes how
to compute the boundary of Hi(xy).

As shown in Figure 11(c) and Figure 12(a), we let gv(CW) be the point
on the Gaussian circle bounding Tv(xy) rotating clockwise (when seen from
+∞ on the z-axis – the rotation axis) and gv(CCW) the point on the Gaussian
circle bounding Tv(xy) rotating counterclockwise. We compute the boundary
points of Tv(xy), that is, gv(CW) and gv(CCW), incrementally as follows.

Initially, gv(CW) and gv(CCW) are set to the two corresponding boundary
points of H1(xy). Then, for each i (i = 2, 3, · · · , vale(v)), if necessary we
update gv(CW) and gv(CCW), that is, the boundaries of Tv(xy) as follows. For
each i, if neither of the gv(CW) or gv(CCW) calculated thus far are in Hi(xy),
Tv(xy) is empty (Figure 12 (b)). On the other hand, if both gv(CW) and
gv(CCW) are in Hi(xy), we do not have to update Tv(xy)(Figure 12 (c)). When
one of gv(CW) and gv(CCW) is not in Hi(xy), one of the boundary points of
Hi(xy) is in Tv(xy) (let this be r). If gv(CW) is not in Hi(xy), we set gv(CW) to
r (Figure 12 (d)). If gv(CCW) is not in Hi(xy), we set gv(CCW) to r (Figure 12

1Tv(xy) = Tv
⋂

xy = (
⋂

i Hi)
⋂

xy =
⋂

i(Hi
⋂

xy) =
⋂

i Hi(xy)

where xy is the xy-plane.

15

(e)). After performing this update for each ei (i = 2, 3, · · · , vale(v)), gv(CW)

and gv(CCW) will be the points bounding Tv(xy).
We define g∗v(CW) as the point on the xy-plane Gaussian circle that is not

in Tv(xy) and is closest to gv(CW). In a similar manner, we define g∗v(CCW) as
the point on the xy-plane Gaussian circle that is not in Tv(xy) and is closest to
gv(CCW). Thus g∗v(CW) and g∗v(CCW) are gravity directions at which a trapped
water particle at v flows out when rotating clockwise or counterclockwise
around a given rotation axis.

Letting gv(CW) = ((gv(CW))x, (gv(CW))y, 0) and gv(CCW) = ((gv(CCW))x, (gv(CCW))y, 0),
we can describe g∗v(CW) and g∗v(CCW) as

g∗v(CW) =




(gv(CW))x cos ε− (gv(CW))y sin ε
(gv(CW))x sin ε + (gv(CW))y cos ε

0




g∗v(CCW) =




(gv(CCW))x cos ε + (gv(CCW))y sin ε
−(gv(CCW))x sin ε + (gv(CCW))y cos ε

0




where ε is a positive infinitesimal number representing the infinitesimal ro-
tation.

3.2.2. Concave vertex where trapped water flowing out settles

In the previous subsection, for each concave vertex v ∈ Vc, we showed
how we compute the two gravity directions when the trapped water particle
at v flows out under rotation around the rotation axis. Now, we describe
how to determine which concave vertex the water particle flowing out from
v settles in (or if it exits the geometry).

We will use the following notation. Given a vertex v, let wi be a member
of the set of adjacent vertices of v and ei be the normalized vector from v
to wi, that is, ei = (wi − v)/‖wi − v‖ (i = 1, 2, · · · , vale(v)). We call edge
ei the locally-steepest edge from v with respect to unit gravity vector g if
ei · g > 0 and ei is “steeper” with respect to gravity g than any vectors
from v on ei’s adjacent triangles. An edge is steeper if ei · g > e∗i1 · g and
ei · g > e∗i2 · g, where e∗i1 = (εei−1 + (1 − ε)ei)/‖εei−1 + (1 − ε)ei‖ and e∗i2 =
(εei+1 + (1 − ε)ei)/‖εei+1 + (1 − ε)ei‖ (ε is a positive infinitesimal number)
(Figure 13(a)). Let ti be the triangle incident to v defined by vertices v, wi,
and wi+1. We define projg(ti) as the projection of gravity vector g onto the
plane of triangle ti; thus, for triangle ti’s normal vector nti , we can calculate

16

(a) (b)

Figure 13: (a) Edge ei is a locally-steepest edge if ei ·g > 0 and ei is steeper
with respect to gravity g than any vectors on ei’s adjacent triangles, e.g. e∗i1
and e∗i2. (b) Triangle ti is a locally-steepest triangle with respect to gravity g
if nti · g < 0 and projg(t) lies on triangle ti.

projg(ti) = (I−ntinti
T)g. We call triangle ti the locally-steepest triangle with

respect to gravity g if nti ·g < 0 and projg(t) lies on triangle ti. That is, there
exist scalar values α and β that satisfy v + projg(ti)α = wi(1− β) + wi+1β,
α > 0, and 0 < β < 1. (Note that there may be more than one locally-
steepest edge or triangle for a given vertex.)

We only describe the case when we rotate the geometry clockwise be-
cause the same procedure works for the counterclockwise case. Let the set of
concave vertices where the water particle leaving v settles when we trace the
particle with g∗v(CW) be Sv(CW) and when we trace the particle with g∗v(CCW)

be Sv(CCW). For the sake of simplicity of notation, we let Sv
def
= Sv(CW) and

g
def
= g∗v(CW) for this explanation. The three cases of a particle leaving a vertex

vcur and falling through space, traveling along an edge, or traveling along the
face of a triangle are handled by Procedure 1: TraceFromVertex (Figure 14
(a)(b)(c)). The three cases for a particle leaving a location pcur in the middle
of an edge ecur and falling through space, traveling along the face of a triangle,
or traveling along an edge are handled by Procedure 2: TraceFromEdge
(Figure 14 (e)(f)(g)(h)). Procedure 3: ParticleDrop, Procedure 4: Find-
NextEdge, and Procedure 5: TraceOnFlatRegion handle the transitions
between these states. We outline the logic below; the corresponding detailed

17

Figure 14: Transition cases of a water particle under gravity on various ge-
ometric shapes. (a)(b)(c) Possible movements from a vertex. (d) Movement
when a particle drops vertically. (e)(f)(g)(h) Possible movements from an
edge.

pseudocode for each subroutine is shown in Algorithms 1, 2, 3, 4, and 5.
We find Sv for v under gravity force g by tracking the particle location

starting with Procedure 1: TraceFromVertex, initially setting vcur to v.

1. TraceFromVertex:

• If a point vcur + εg (ε is a positive infinitesimal number) is outside
of the geometry, the water particle falls down parallel to g from
vcur (Figure 14 (a)). To simulate this, we shoot a half-ray vcur +γg
(where γ is a positive scalar). Go to 3.

• Otherwise, we define m = arg maxi(ei · g) (i.e. ∀i, em · g ≥ ei · g).

– if em · g < 0 , the water particle flowing out from v settles at
vcur. We add vcur to Sv.

– if em · g > 0 , we let the set of locally-steepest edges of vcur be
Es and the set of locally-steepest triangles of vcur be Ts. For
each edge ej in Es (j = 1, · · · , |Es|), we set vcur to wj (the
endpoint of ej that is not v) and Go to 1 for each ej. For each

18

triangle tj in Ts (j = 1, · · · , |Ts|), we solve vcur +projg(tj)α =
wj(1 − β) + wj+1β. We set ecur to the edge wjwj+1 and pcur

to point wj(1− β) + wj+1β. Go to 2 for each tj. (Figure 14
(b).)

– otherwise (em · g = 0); we cannot decide whether the water
particle settles at vcur or moves to another point by looking
only at local information at vcur (Figure 14 (c)). We set pcur

to vcur. Go to 5.

2. TraceFromEdge: Let the two triangles adjacent to ecur be t1 and t2
with normals n1 and n2 respectively.

• If ecur is a ridge edge and n1 · g ≥ 0 or n2 · g ≥ 0, the water
particle falls down; we shoot a half-ray pcur + γg (where γ is a
positive scalar). Go to 3. (Figure 14 (e).)

• Otherwise, if t1 is not perpendicular to g, we set tcur to t1 and Go
to 4; then, if t2 is not perpendicular to g, we set tcur to t2 and
Go to 4. (Figure 14 (f)(g).)

If the particle does not move along either t1 or t2, the particle goes
along ecur (Figure 14 (h)). Letting the two endpoints of ecur be va

and vb,

– if va · g > vb · g, we set vcur to va. Go to 1.

– if va · g < vb · g, we set vcur to vb. Go to 1.

– otherwise (va · g = vb · g), Go to 5.

3. ParticleDrop:

• If the ray does not hit any part of the input geometry, the water
particle exits the geometry; we add “out” to Sv.

• Otherwise,

– if the ray hits a vertex, we set vcur to the vertex. Go to 1.

– else if the ray hits an edge, we set ecur to the edge and pcur to
the point the ray hits. Go to 2.

– else if the ray hits a triangle, we set tcur to the triangle and
pcur to the point the ray hits. If tcur is not perpendicular to
g, Go to 4 (Figure 14 (d)). Otherwise, Go to 5.

4. FindNextEdge: We find the edge of tcur such that, letting the two
endpoints of the edge be va and vb, there exist scalar values α and β
that satisfy pcur +projg(tcur)α = va(1−β)+vbβ, α > 0, and 0 ≤ β ≤ 1.

19

• If we find such an edge, then

– when β = 0, set vcur to va. Go to 1.

– when β = 1, set vcur to vb. Go to 1.

– when 0 < β < 1, set ecur to this intersecting edge and set pcur

to va(1− β) + vbβ. Go to 2.

• Otherwise, the particle does not move along tcur with g.

5. TraceOnFlatRegion: On a horizontal region (perpendicular to g), a
particle does not move via gravity; therefore, we assume that particles
diffuse concentrically and flow out through the closest point from pcur

that can be reached along edges and triangles perpendicular to g. We
call such a closest point pf .
We define Eperp as the set of edges that are perpendicular to g and can
be reached from pcur only traversing edges and triangles perpendicular
to g. We also define Tperp as the set of triangles perpendicular to g and
incident to edges in Eperp. We define Vcand and Ecand as the vertices
and edges where a water particle leaving pcur may flow out through:
Vcand consists of vertices each of which is an endpoint of Eperp and has
an incident edge ei such that ei · g > 0; Ecand consists of ridge edges in
Eperp.

• If Vcand and Ecand are empty, the particle is trapped at this flat
region. We add all the concave vertices incident to the edges in
Eperp to Sv.

• Otherwise, we find pf (Appendix B describes how to find pf , given
pcur and Eperp, Tperp, Vcand, and Ecand).

– If pf is on a vertex in Vcand, set vcur to pf . Go to 1.

– If pf is on an edge in Ecand, set pcur to pf and tcur to the
triangle incident to the edge and not in Tperp. Go to 3.

We repeat this procedure for each v until we find all the possible concave
vertices (possibly plus “out”) that should be added to each Sv. For each
concave vertex v ∈ Vc, we connect the corresponding node to the nodes
corresponding to the elements in Sv(CW) by an edge labeled CW and to the
nodes corresponding to the elements in Sv(CCW) by an edge labeled CCW .

Note that the ray tracing performance in Procedure 3 will be very expen-
sive for large inputs unless we use a bounding volume hierarchy (BVH) [13]
to limit the number of triangles tested. We used a kd-tree [14] for the BVH
in our implementation.

20

Algorithm 1 TraceFromVertex
Input: vertex vcur

if vcur + εg is outside of the geometry then
ParticleDrop(vcur + γg)

else
m ← arg maxi(ei · g)
if em · g < 0 then

// water particle settles at vcur

Sv ← Sv ∪ vcur

else if em · g > 0 then
for j = 1 to |Es| do

TraceFromVertex(wj)
end for
for j = 1 to |Ts| do

Solve for α and β s.t. vcur + projg(tj)α = wj(1− β) + wj+1β
TraceFromEdge(wjwj+1, wj(1− β) + wj+1β)

end for
else

// em · g = 0
TraceOnFlatRegion(vcur)

end if
end if

4. Checking Drainability

Now, using the draining graph constructed, we test whether or not a
rotation around a given rotation axis can completely drain trapped water.
For each concave vertex v ∈ Vc, if there is a path from the corresponding
node to the out node in the draining graph, we can drain water trapped at
v by rotating the input geometry around this rotation axis. Note that when
we rotate the geometry clockwise, we can use only edges labeled CW , and
when we rotate counterclockwise, we can use only edges labeled CCW .

4.1. Checking Procedure

Letting the number of concave vertices be n = |Vc|, if we take a naive
approach, we may have to trace n nodes from each concave vertex v ∈ Vc in
the worst case. Therefore, the total running time becomes O(n2). However,
we observe that if there is a path from one node to the out node, it means

21

Algorithm 2 TraceFromEdge

Input: current edge ecur, current point pcur

if ecur is a ridge edge, and n1 · g ≥ 0 or n2 · g ≥ 0 then
ParticleDrop(pcur + γg)

else
found1 ← FindNextEdge(t1, pcur)
found2 ← FindNextEdge(t2, pcur)
if found1 = false and found2 = false then

if va · g > vb · g then
TraceFromVertex(va)

else if va · g < vb · g then
TraceFromVertex(vb)

else
// va · g = vb · g
TraceOnFlatRegion(pcur)

end if
end if

end if

Algorithm 3 ParticleDrop

Input: half-ray h Ray
if h Ray does not hit any part of the input geometry then

Sv ← Sv ∪ out
else if half-ray h Ray hits a vertex vhit then

TraceFromVertex(vhit)
else if half-ray h Ray hits an edge ehit then

phit ← point where h Ray hits ehit

TraceFromEdge(ehit, phit)
else if half-ray h Ray hits a triangle thit then

phit ← point where h Ray intersects thit

if thit is not perpendicular to g then
FindNextEdge(thit, phit)

else
TraceOnFlatRegion(thit)

end if
end if

22

Algorithm 4 FindNextEdge

Input: triangle tcur, current point pcur

for all three edges ei of tcur (i = 1, 2, 3) do
va ← one endpoint of ei

vb ← other endpoint of ei

Solve for α and β s.t. pcur + projg(tcur)α = va(1− β) + vbβ
if α > 0 and 0 ≤ β ≤ 1 then

if β = 0 then
TraceFromVertex(va)

else if β = 1 then
TraceFromVertex(vb)

else if 0 < β < 1 then
TraceFromEdge(ei, va(1− β) + vbβ)

end if
return true

end if
end for
// particle does not move along tcur

return false

Algorithm 5 TraceOnFlatRegion
Input: current point pcur

if Vcand and Ecand are empty then
// flat region is a water trap
Sv ← Sv ∪ (all the concave vertices incident to edges in Eperp)

else
Find pf from pcur, Eperp, Tperp, Vcand, and Ecand // (see Appendix B)
if pf is on a vertex in Vcand then

TraceFromVertex(pf)
else

// pf is on an edge in Ecand

tcur ← triangle incident to the edge and not in Tperp

FindNextEdge(tcur, pf)
end if

end if

23

(a) (b) (c)

Figure 15: We applied our theory to a simple mechanical workpiece shown
in (a). The three sections indicated in (b) are shown in (c).

that there is also a path from the intermediate nodes on this path to the out
node (because draining is transitive). For example, in Figure 4, if we find a
path from A through B, C, and D to out, we know that there is also a path
from B, through C and D to out, and so on.

Based on this observation, we can improve the running time through the
following procedure. Suppose we rotate the geometry in a clockwise direction.
Then, trapped water particles at the concave vertices whose corresponding
nodes are directly connected to the out node by the edges labeled as CW
can be drained. Let the set of these nodes be Nd. Next, consider trapped
water particles at concave vertices whose corresponding nodes are directly
connected to the nodes in Nd by edges labeled as CW ; these can be drained
as well. We add these nodes to Nd, and continue recursively. This recursion
stops when all the nodes connecting to at least one of the nodes in Nd by the
edges labeled as CW are in Nd. Then, after the recursion stops, if |Nd| = n,
we can guarantee that trapped water particles at all of the concave vertices
are completely drained by rotation around the given rotation axis. Through
this approach, we do not have to check the same node more than once.
Therefore, the time complexity becomes O(n).

5. Results

We first visualize the analysis output for two sample parts, one simple
and one complex, and then discuss the performance.

5.1. Output

We first show our output graphically for the simple mechanical part shown
in Figure 15(a). Figure 15(b) indicates the locations of the three cross-

24

(a) CW (b) CCW

(c)

Figure 16: Whether or not a rotation around a given axis (θ, φ) completely
drains the workpiece (a) under CW and (b) CCW rotation. (c) The config-
urations of the workpiece when φ = 0 and θ = 170◦, 240◦, 350◦, and 60◦

that are the limits in the φ = 0 plane of whether the rotation axis drains the
workpiece or not. We can see that the angle between the x-axis and the outlet
closer to the x-axis is the same for all four cases.

sections shown in Figure 15(c), revealing an inside void of the workpiece
where water can be trapped. Figure 16 (a) and (b) plot whether or not a
rotation around a given axis (θ, φ) completely drains the workpiece under
CW and CCW rotation respectively. To verify these results, we show some
representative configurations in Figure 16(c) for the CW case. All these
configurations are when φ = 0 and viewed from +∞ on the y-axis. If we
fix φ = 0, when 170◦ ≤ θ ≤ 240◦ and 350◦ ≤ θ ≤ 420◦(= 60◦), we cannot
drain the workpiece as shown in Figure 16(a). The four configurations shown
in Figure 16(c) are set at these four limits. Notice that the angle between
the x-axis and the outlet closer to the x-axis is the same for all four cases;
this angle is a threshold for whether or not a given rotation axis works for

25

(a)

(b)

Figure 17: Some representative results. (a) θ = 0◦, φ = 0◦. (b) θ = 230◦,
φ = 30◦. For both (a) and (b), the rotation axis is set perpendicular to the
paper for the left and center figures. The right figure is a view from a different
angle. For the center and right figures, the vertices shown in blue are concave
vertices such that once a water particle is trapped there, it will never exit the
workpiece when we rotate it around the corresponding rotation axis.

draining. This shows that our algorithm can capture this threshold.
Figure 17 shows representative results of two additional CW cases ((a)

θ = 0◦, φ = 0◦, (b) θ = 230◦, φ = 30◦). For the center and right figures, the
vertices shown in blue are concave vertices where a water trap is potentially
formed when we rotate the workpiece around the corresponding rotation
axis; we cannot drain the workpiece. Figure 18 shows a result when θ = 30◦

and φ = 60◦. This is an example where CW rotation works but CCW
rotation does not work (see Figure 16 (a) and (b)). Figure 19 shows the
corresponding transition of a water particle when we rotate (a) clockwise
and (b) counterclockwise around this rotation axis.

To get a sense of how sensitive our algorithm is to the coarseness of the

26

Figure 18: θ = 30◦, φ = 60◦. With this rotation axis, CW rotation drains
the workpiece but CCW rotation does not. The rotation axis is set perpen-
dicular to the paper for the left and center figures. The right figure is a view
from a different angle.

(a) (b)

Figure 19: The transition of a water particle when we rotate (a) clockwise
and (b) counterclockwise around a rotation axis θ = 30◦, φ = 60◦. CW
rotation drains the workpiece but CCW rotation does not.

triangulation, we compared these results to those on a fine tessellation of
the same model. We found only slight shifts in the boundary between the
drainable and non-drainable regions (see Figure 20).

We also applied our algorithm to a complex automotive model shown in
Figure 21(a). Our algorithm can quickly compute whether or not a given
rotation axis will drain the workpiece even when internal passages (Figure
21(b)(c)) are very complex, as in this example. Figure 21(d) and (e) plot
whether or not the indicated rotation axis drains this model. Figure 21 (f)
shows concave vertices (colored blue) where a water trap is potentially formed
when the rotation axis is set to θ = 270◦, φ = 0◦. Figure 21 (g) shows the

27

Figure 20: Comparison of the results shown in Figure 16 (a) and (b) with
results for a finer tessellation of the same model with almost five times the
number of vertices. The results that differ are circled.

corresponding axis-aligned magnified view.

5.2. Performance

Table 1 shows the performance of our implementation on a 2.66GHz CPU
with 4GB of RAM. The initialization mainly consists of identifying the con-
cave vertices of the input mesh and constructing a BVH for speeding up the
ray tracing phase of the geometry. This information can be reused no matter
what rotation axis is being considered, and typically more than one possible
rotation axis will need to be tested. Then, after the initialization, we tested
36×9 = 324 (sampled at every 10 degrees in both θ and φ directions) rotation
axes for each model and report the average and maximum time in Table 1.
We can see that we can test a given rotation axis very quickly and give near-
interactive feedback to designers for testing each additional axis. Table 2
shows the detailed timing data, showing the individual timing for each of
three phases to test a rotation axis, i.e. finding g∗v(CW) and g∗v(CCW) (section

28

Table 1: Time for initialization and to test each additional rotation axis
(average and maximum).

triangles vertices concave
vertices

initialization
time (sec)

average
time (sec)

maximum
time (sec)

(a) 3,572 1,796 428 0.575 0.006 0.035

(b) 12,0004 59,920 18,203 5.841 0.195 0.278

(c) 160,312 79,982 31,829 9.319 0.360 0.760

(d) 289,956 144,546 57,412 20.742 0.933 5.730

Table 2: Detailed timing data, showing the individual timing (average and
maximum) for each of three phases to test each additional rotation axis.

Find g∗v(CW) and g∗v(CCW)Find Sv(CW) and Sv(CCW)Checking Drainability Total

average(sec) max(sec) average(sec) max(sec) average(sec) max(sec) average(sec) max(sec)

(a) 0.001 0.011 0.002 0.015 0.004 0.009 0.006 0.035

(b) 0.045 0.064 0.138 0.227 0.013 0.017 0.195 0.278

(c) 0.067 0.106 0.279 0.654 0.014 0.025 0.360 0.760

(d) 0.131 0.169 0.774 5.575 0.028 0.040 0.933 5.730

3.2.1), finding Sv(CW) and Sv(CCW) (section 3.2.2), and testing drainability by
analyzing the draining graph constructed through the preceding two phases
(section 4). The performance bottleneck of our current implementation is
finding Sv(CW) and Sv(CCW) (i.e. the particle tracing operation in the graph
construction phase), so we will investigate offloading some of this work to the
GPU in future work. We also measured the number of function calls made
to Algorithm 1-5 in determining Sv(CW) and Sv(CCW) for each concave vertex
v ∈ Vc (shown in Table 3). Although the maximum number of calls is higher
for the more complex models, the average was low for all models tested.

29

Table 3: The number of function calls (average and maximum) to determine
Sv(CW) and Sv(CCW) for each concave vertex v ∈ Vc.

TraceFromVertex TraceFromEdge ParticleDrop FindNextEdge TraceOnFlatRegion Total

average max average max average max average max average max average max

(a) 3.02 31 5.42 329 0.26 11 5.72 333 0.01 2 14.43 694

(b) 4.42 1108 6.50 1661 0.44 152 7.37 1772 0.001 2 18.74 4046

(c) 3.35 538 4.97 1338 0.40 235 5.53 1558 0.005 5 14.25 3440

(d) 3.87 14260 8.25121779 0.59 7392 9.16134672 0.020 16 21.89278103

6. Complexity Analysis

Since our ultimate goal is to find a rotation axis for a geometric model
such that when the workpiece is rotated around this axis, all water drains,
we may need to test many candidate axes. Therefore, it is important that
our testing algorithm run quickly. We now analyze the scalability of our
algorithm. In the graph construction phase, for each concave vertex v ∈ Vc,
first we compute the gravity directions when the trapped water at v starts
to flow out. For each concave vertex v, this takes a constant number of
operations equal to the number of edges incident to v, so it is in O(n). For
each concave vertex v ∈ Vc, we find the concave vertex into which the trapped
water particle flowing out from v settles. In theory, for each v, we have to
check all triangles and vertices of the geometry to find the final location in the
worst case. Therefore, as Table 3 shows, the maximum number of function
calls possibly becomes very high. We are still investigating the performance
of particle tracing to construct this graph. However, from the fact that a
water particle is driven by only a fixed gravity force and the assumption
that the input triangles and vertices are uniformly distributed in space, in
practice the number of vertices and triangles checked are only a very small
fraction of n, reducing worst case O(n2) growth to close to linear on average
in practice; experimental results shown in Table 3 support this. Once the
graph is constructed, the checking phase runs in O(n) time as described in
section 4.

30

(a) (b) (c)

(d) (e)

(f) (g)

Figure 21: (a) Cylinder head model (b)(c) Cross sections revealing the in-
ternal passages of the model shown in (a). (d) Plot of whether or not rotation
around a given rotation axis completely drains the workpiece under CW rota-
tion and (e) CCW rotation. (f) The concave vertices (colored blue) such that
once a water particle is trapped there, it will never exit the workpiece when
we rotate it around rotation axis θ = 270◦, φ = 0◦, which is set horizontally
in the plane of the paper. (g) Magnified view of the region indicated in (f).

7. Discussion and Future Work

Since this is the first research to our knowledge that addresses testing
a rotation axis for drainability, we have made a number of simplifying as-

31

sumptions to make the problem more tractable. In our future work, we plan
to test and/or relax these assumptions as we build on this work to develop
more sophisticated variations of our algorithm. The impact of some of our
assumptions must be tested experimentally, such as ignoring the effect of
viscosity. As a first step, we can also compare our results with the output of
a physics-based approach.

Although we have shown theoretically that a rotation axis that drains all
the core particles must eventually drain the entire part, our existing algo-
rithm would need some modifications to calculate how many rotations will be
needed. As we showed, for a water trap containing multiple water particles,
not all water particles will move to the same water trap that the core particle
moves to.

Ultimately, of course, we hope to move beyond testing given axes (a
sample-based approach) to finding all drainable axes (using a configuration
space approach).

8. Conclusion

In this paper, we presented a new geometric algorithm to test whether
a rotation around a given rotation axis can drain an input geometry. Our
proof-of-concept implementation can test input meshes of complex industrial
parts containing over 100,000 vertices in about a second, a huge improvement
compared to using commercial general-purpose simulation packages that can
take hours to converge.

Acknowledgments

We would like thank Sushrut Pavanaskar for background research on par-
ticle systems and physical simulations in computer graphics and feedback on
the presentation. We also would like to thank Adarsh Krishnamurthy, Wei
Li, and the anonymous reviewers for additional valuable feedback. This ma-
terial is based on work supported in part by Daimler AG, UC Discovery
under Grant No. DIG07-10224, and the National Science Foundation under
Grant No. 0621198.

This paper is an extended version of the work presented in SPM ’09: 2009
SIAM/ACM Joint Conference on Geometric and Physical Modeling [15].

32

Appendix A. Boundary of Hi(xy)

The boundary of Hi(xy) is defined by the intersection points between the
boundary of Hi and the xy-plane Gaussian circle. Let the intersection point
be I = (Ix, Iy, 0). Since it is confined on the Gaussian circle, Ix

2 + Iy
2 = 1.

From the definition, the boundary of Hi is defined by the plane perpendicular
to ei. Letting ei = ((ei)x, (ei)y, (ei)z), this plane is expressed as (ei)xx +
(ei)yy + (ei)zz = 0. Then, assuming (ei)x 6= 0, we can solve for Ix,

(ei)x(Ix) + (ei)y(Iy) + (ei)z(0) = 0

Ix = − (ei)y

(ei)x
Iy ((ei)x 6= 0)

Substituting into Ix
2 + Iy

2 = 1,

((ei)y

(ei)x
)2Iy

2 + Iy
2 = 1

((ei)y

(ei)x
)2 + 1)Iy

2 = 1

Iy = ±
√

1

(
(ei)y
(ei)x

)2+1
((ei)x 6= 0)

Note that the boundary of Hi and the Gaussian circle intersect at two points.
When (ei)x = 0, if (ei)y 6= 0, Ix = ±1 and Iy = 0, and if (ei)y = 0 as well,
the entire xy-plane Gaussian circle defines the boundary of Hi.

Appendix B. Finding a closest point on a flat region

Among vertices in Vcand and points on edges in Ecand (Vcand and Ecand

are the candidate vertices and edges where a water particle leaving pcur may
flow out through), we find the point pf that is closest to pcur along edges
in Eperp and triangles in Tperp. Since this problem can be NP-hard [16],
we solve the problem using a modification of the approximation method
proposed by Kallmann [17]. First, we define a set Epath, the set of edges in
Eperp both of whose incident triangles are not in Tperp. We also define a set
Eflat, the set of edges in Eperp both of whose incident triangles are in Tperp

(Figure B.22 (b)). Then, we consider a graph whose nodes consist of pcur,
vertices incident to Epath, and midpoints of edges in Eflat and Ecand. The
graph’s edges are those in Epath plus edges between any pair of nodes on the
same triangle in Tperp. Letting nstart be a node corresponding to pcur in the

33

Figure B.22: (a) pcur, edges in Eperp, and triangles in Tperp. Suppose
Ecand = { u′v′, u′′v′′ }. (b) Edges in Epath (yellow) and edges in Eflat (green)
are highlighted. (c) Shortest path tree from nstart (corresponding to pcur) on
the graph whose nodes consist of pcur, vertices incident to Epath, and mid-
points of edges in Eflat and Ecand. Edges of the graph are those in Epath plus
edges between any pair of nodes on the same triangle in Tperp. (d) Channel
of u′. (e) Shortest path from nstart to each vertex along the channels. (f) The
shortest path from nstart on edge u′v′ (respectively, u′′v′′) is the shortest path
from the apex of the corresponding funnel a′ (respectively, a′′). The shortest
path from nstart to each edge lies on the dashed lines.

graph, we construct a shortest path tree from nstart on the graph using, for
example, Dijkstra’s algorithm (Figure B.22 (c)). At this point, the minimum
distance to each vertex incident to edges in Epath is determined; therefore, if
Tperp is empty (note that Ecand is also empty in this case), a vertex in Vcand

corresponding to a graph node with a minimum distance on the shortest path
tree is pf . Otherwise, we find the minimum distances to other vertices using
the funnel algorithm [18, 19]. The funnel algorithm finds the shortest path
to each vertex inside a channel, a chain of triangles along the shortest path

34

tree (Figure B.22 (d)(e))). For an explanation of how the funnel algorithm
works, refer to [16].

We have to find the shortest path from nstart to each edge in Ecand, since
pf may be located on some edge in Ecand. As shown in Figure B.22 (f),
the shortest path from nstart to the edge’s two endpoints u and v on the
corresponding channel travel together and diverge at a vertex a (called the
apex). The region bounded by edge uv and concave chains from u and v
to a is called the funnel [16]. The shortest path from nstart to edge uv
passes through a; therefore, we can find the shortest path from nstart by
finding the shortest path from a. If uv and a half-line extending from a and
perpendicular to uv intersect, the line segment between a and the intersection
point is the shortest path from a to uv (as for a′′ and u′′v′′ in Figure B.22 (f)).
Otherwise, the line segment between a and an intersection point between uv
and a tangent line of the funnel extending from a is the shortest path. There
are two candidates, so we pick the shorter one (an example is the line from
a′ to u′ in Figure B.22 (f)). Finally, the minimum distance from nstart to
uv along edges in Eperp and triangles in Tperp is the minimum distance from
nstart to a plus the length of the line segment from the apex.

Now, we find the minimum distance from nstart to each vertex in Vcand

and point in Ecand along edges in Eperp and triangles in Tperp. The candidate
vertex or point on a candidate edge that has the minimum distance from
nstart is pf .

References

[1] D. Arbelaez, M. Avila, A. Krishnamurthy, W. Li, Y. Yasui, D. Dornfeld,
S. McMains, Cleanability of mechanical components, in: Proceedings of
2008 NSF Engineering Research and Innovation Conference, 2008.

[2] M. Avila, C. Reich-Weiser, D. Dornfeld, S. McMains, Design and man-
ufacturing for cleanability in high performance cutting, in: Proceeding
of 2nd International High Performance Cutting Conference, 2006.

[3] K. Berger, Burrs, chips and cleanness of parts - activities and aims in
the German automotive industry, in: Presentation at CIRP Working
Group on Burr Formation, 2006.

[4] M. Müller, J. Stam, D. James, N. Thürey, Real time
physics: class notes, in: SIGGRAPH ’08: ACM SIGGRAPH

35

2008 classes, ACM, New York, NY, USA, 2008, pp. 1–90.
doi:http://doi.acm.org/10.1145/1401132.1401245.

[5] H. Nguyen, GPU gems 3, Addison-Wesley Professional, 2007.

[6] M. Müller-Fischer, D. Charypar, M. Gross, Particle-based fluid simula-
tion for interactive applications, in: SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, 2003, pp. 154–159.

[7] M. Müller-Fischer, P. Mark, G. Markus, K. Richard, W. Martin,
Physics-based animation, in: M. Gross, H. Pfister (Eds.), Point-Based
Graphics, Morgan Kaufmann, Burlington, 2007, pp. 340 – 387.

[8] G. Aloupis, J. Cardinal, S. Collette, F. Hurtado, S. Langerman,
J. O’Rourke, Draining a polygon - or - rolling a ball out of a polygon.,
in: CCCG, 2008.
URL http://dblp.uni-trier.de/db/conf/cccg/cccg2008.html#AloupisCCHLO08

[9] F. J. Bradley, S. Heinemann, J. A. Hoopes, A hydraulics-
based/optimization methodology for gating design, Applied Mathemat-
ical Modelling 17 (8) (1993) 406 – 414.

[10] P. Bose, M. van Kreveld, G. Toussaint, Filling polyhedral molds,
Computer-Aided Design 30 (4) (1998) 245 – 254.

[11] K. Tang, L.-L. Chen, S.-Y. Chou, Optimal workpiece setups for 4-axis
numerical control machining based on machinability, Computers in In-
dustry 37 (1) (1998) 27 – 41.

[12] T. C. Woo, Visibility maps and spherical algorithms, Computer-Aided
Design 26 (1).

[13] H. Samet, Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005.

[14] J. L. Bentley, Multidimensional binary search trees used for
associative searching, Commun. ACM 18 (9) (1975) 509–517.
doi:http://doi.acm.org/10.1145/361002.361007.

36

[15] Y. Yasui, S. McMains, Testing an axis of rotation for 3D workpiece
draining, in: SPM ’09: 2009 SIAM/ACM Joint Conference on Geometric
and Physical Modeling, ACM, New York, NY, USA, 2009, pp. 223–233.
doi:http://doi.acm.org/10.1145/1629255.1629283.

[16] J. Hershberger, J. Snoeyink, Computing minimum length paths of a
given homotopy class, Comput. Geom. Theory Appl. 4 (2) (1994) 63–
97. doi:http://dx.doi.org/10.1016/0925-7721(94)90010-8.

[17] M. Kallmann, Path planning in triangulations, in: Proceedings of the
IJCAI Workshop on Reasoning, Representation, and Learning in Com-
puter Games, Edinburgh, Scotland, 2005.

[18] D. T. Lee, F. P. Preparata, Euclidean shortest paths in the presence of
rectilinear barriers, Networks 14 (3) (1984) 393–410.

[19] B. Chazelle, A theorem on polygon cutting with applications, in: SFCS
’82: Proceedings of the 23rd Annual Symposium on Foundations of Com-
puter Science, IEEE Computer Society, Washington, DC, USA, 1982,
pp. 339–349. doi:http://dx.doi.org/10.1109/SFCS.1982.58.

37

