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ABSTRACT
We propose a new method to detect potential water trap re-
gions in voids of oriented polygonal models that approximate
the geometry of mechanical parts. Since water traps de-
crease water jet cleaning efficiency, predicting such cleaning-
incompatible regions is important to reduce manufacturing
time and cost. We construct a directed graph that captures
the flow of water in voids of a 3D input model, based on a
fast orientation-dependent volume segmentation approach.
We can quickly find the water trap regions by analyzing the
directed graph. Since we take a purely geometric approach
to solve this problem without employing any physical simu-
lation, even if the geometry of the voids is complicated, we
can find such regions quickly.

Categories and Subject Descriptors
J.6 [Computer Applications]: COMPUTER-AIDED EN-
GINEERING—Computer-aided design (CAD); J.6 [Computer
Applications]: COMPUTER-AIDED ENGINEERING—
Computer-aided manufacturing (CAM)

Keywords
pool segmentation, plane sweep algorithm, water trap, 2D
slice polygon, directed graph

1. INTRODUCTION
As the complexity and precision of mechanical parts and

assemblies have increased, the possibility of in-service fail-
ures caused by manufacturing-related hard particle contam-
ination (such as detached burrs and chips from machining)
has increased considerably. Reliably removing solid parti-
cle contaminants from the surfaces of mechanical parts has
become increasingly important in the automotive industry.
However, miniaturization and increased geometric complex-
ity has made it more difficult to access all the surfaces of
parts to remove contaminants.
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In this paper, we consider cleaning with high-pressure wa-
ter jets. Water jets are effective for removing contaminants
from the surface of mechanical parts, but the water may
become trapped inside the part if the geometry of voids is
complex. Since contaminants may accumulate in such re-
gions and trapped water must be drained after the cleaning,
finding an orientation that minimizes the potential water
trap regions is important to increase the cleaning efficiency
and reduce the draining time and effort after cleaning.

We propose a new method to pre-identify the regions of
cleaning-incompatible water traps in voids of mechanical
parts using a geometric volume segmentation method, given
the part orientation. We assume that the part geometry
is given as a 2-manifold triangulated polygonal mesh and
that the force applied to the water is only the gravitational
force. In order to provide interactive “Design for Cleanabil-
ity” (DFC) feedback to designers, our algorithm does not
rely on computationally expensive methods such as compu-
tational fluid dynamics (CFD).

1.1 Previous Work
To increase the efficiency of cleaning processes, analytical

tools that predict cleaning effectiveness at the design and
process planning stages are needed. Initial research has fo-
cused on understanding the effect of key cleaning process
parameters [1, 2, 3, 4].

Generally speaking, manufacturing processes are highly
complex phenomena, especially when fluid is involved. Since
simulating such phenomena using CFD simulation is time-
consuming, some purely geometric approaches have been
proposed. Bose and Toussaint proposed an algorithm to
find an orientation for a gravity casting mold that elimi-
nates surface defects and insures a complete fill without air
traps [5, 6]. Their algorithm finds the orientation that min-
imizes the number of venting holes that need to be added
to allow air to escape to insure a complete fill. Yasui and
McMains proposed an algorithm to test whether a given ro-
tation axis can fully drain a workpiece when the workpiece
is rotated around the axis [13, 14]. The method we propose
in this paper is also purely geometric and does not involve
computationally costly simulations.

2. ALGORITHM OVERVIEW
Our algorithm predicts regions in voids of the geometry

where, for a given orientation, the effectiveness of cleaning
with water jets will be compromised due to water traps. We
assume throughout this paper that the part geometry has
been rotated to the desired test orientation, so that gravity
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Figure 1: Overview: (a) From input geometry M,
(b) we define the space W = B \ M where water
could flow. (c) Using a sweep plane psweep(z), (d)
we track the evolution of connected slice compo-
nents si(z) ∈ W ∩ psweep(z). (e) At locations where
slice components split or merge, we segment W into
pools, and (f) assign directed edges that capture the
water flow between pairs of pools. (g) From the
constructed graph, we locate potential water trap
regions. (h) We map the region(s) to input M.

always acts vertically (i.e. down the z-axis).
Figure 1 illustrates an overview of our algorithm. Letting
M be the geometry of the input model and B be a slightly
enlarged bounding box that enclosesM, the spaceW where
water flows can be represented as W = B \ M. We split
the space W horizontally into multiple regions called pools
based on topological changes ofW with respect to the z-axis.
Then, we build a directed graph whose nodes correspond to
the pools and whose edges connect two nodes if water flowing
out of the source node’s corresponding pool could enter the
destination node’s corresponding pool. We determine water
trap regions by analyzing the directed graph.

The Reeb graph [11] is a data structure for represent-
ing the topology of shapes that captures topological changes
with respect to a real function defined on the shapes. The
directed graph we construct is mathematically equivalent to
a Reeb graph of a 3-manifold with boundary with respect
to the height function (z-value). Hence, we could construct
the directed graph fromW using a Reeb graph construction
algorithm such as that proposed by Pascucci et al. [10] or
Tierny et al. [12] and segment W into pools based on the
Reeb graph constructed. However, since their approaches
require the extra burden of tetrahedralizing W, we propose
an alternative efficient approach of segmentingW into pools
and constructing the corresponding directed graph simulta-
neously in our work.

2.1 Preliminaries
We introduce some notation that we will use to explain

how we split W into pools and add the directed edges be-
tween nodes corresponding to pools. We consider a sweep
plane psweep(z = z) perpendicular to the z-axis (i.e. the
gravity direction) intersecting it at z. Given a sweep plane
psweep(z), we define the slice at z, S(z), as the intersection of
W and psweep(z): S(z) =W∩psweep(z). As shown in Figure
1 (d), slice S(z) may consist of multiple disconnected slice

components, which in 3D will be 2D polygons (possibly with
holes). We call these slice polygons. We denote the different
slice polygons constituting S(z) as si(z) (1 ≤ i ≤ |S(z)|).

Then, we let proj(si(z)) be the projection of si(z) to
the plane perpendicular to the z-axis, and the z-value just
below z be z− = z − ε and the z-value just above z be
z+ = z + ε, ε a positive infinitesimal number. Given a slice
polygon si(z) ∈ S(z), we define overlapping slice polygon(s)
just below si(z), Sbelow(si(z)), as the set of slice polygons
sj(z

−) ∈ S(z−) such that proj(si(z)) ∩ proj(sj(z−)) 6= ∅.
Similarly, we define overlapping slice polygon(s) just above
si(z), Sabove(si(z)), as the set of slice polygons sj(z

+) ∈
S(z+) such that proj(si(z)) ∩ proj(sj(z+)) 6= ∅.

Based on the cardinality of Sbelow(si(z)) and Sabove(si(z)),
the slice polygons just below and above si(z), we classify
each slice polygon si(z) as one of four types as follows. Given
a slice polygon si(z), if |Sbelow(si(z))| = 0, we call si(z) a
beginning slice polygon since a new slice polygon appears as
the sweep plane moves from psweep(z−) to psweep(z+). On
the other hand, if |Sabove(si(z))| = 0, we call si(z) an end-
ing slice polygon, since an existing slice polygon disappears
as the sweep plane moves from psweep(z−) to psweep(z+). If
|Sbelow(si(z))| ≥ 2 and |Sabove(si(z))| ≥ 1 or |Sbelow(si(z))| ≥
1 and |Sabove(si(z))| ≥ 2, we call si(z) a merge/split slice
polygon since multiple slice polygons merge into one slice
polygon and/or one slice polygon splits into multiple slice
polygons as the sweep plane moves from psweep(z−) to psweep(z+).
Finally, if |Sbelow(si(z))| = |Sabove(si(z))| = 1, we call si(z)
a no-change slice polygon since no topological change of
slice polygon si(z) occurs as the sweep plane moves from
psweep(z−) to psweep(z+).

2.2 Pool Segmentation
We define a pool as the union of no-change slice poly-

gons bounded by either a beginning or a merge/split slice
polygon from below and either an ending or a merge/split
slice polygon from above. Given a slice polygon si(z), we
let pool(si(z)) be the pool si(z) defines.

We segment W into pools using a sweep plane algorithm,
where we imagine moving psweep(z) from z = −∞ to z =
+∞. If W ∩ psweep(z) yields a beginning slice polygon,
we generate a new pool bounded from below by the be-
ginning slice polygon. If W ∩ psweep(z) yields a no-change
slice polygon, the no-change slice polygon si(z) defines the
pool pool(sj(z

−)) where sj(z
−) ∈ Sbelow(si(z)). If W ∩

psweep(z) yields an ending slice polygon, we complete the
corresponding existing pool, bounding it from above with
the ending slice polygon. Finally, if W ∩ psweep(z) yields a
merge/split slice polygon, we complete the corresponding ex-
isting pool(s) by bounding from above with the merge/split
slice polygon, and generate new pool(s) by bounding from
below with the same merge/split slice polygon. Then, for
1 ≤ i ≤ |S(z−)| and for 1 ≤ j ≤ |S(z+)|, we compute
proj(si(z

−)) ∩ proj(sj(z+)). If there are p and q such that
proj(sp(z−))∩proj(sq(z+)) 6= ∅, and pool(sp(z−)) 6= pool(sq(z+)),
we add a directed edge from the node corresponding to
pool(sq(z+)) to the node corresponding to pool(sp(z−)) in
the directed graph (Figure 1 (f)).
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2.3 Predicting Water Trap Regions
After completing the sweep from z = −∞ to z = +∞,

the space W is segmented into pools that are connected to
each other in the graph by edges oriented in the direction
of gravity if they are bounded by the same merge/split slice
polygon. Each pool represents a region that could poten-
tially be a water trap region (except the bottom-most pool,
which represents the exterior ofM). Water flowing inW un-
der gravity will flow between pools according to the directed
edges. Once such flowing water reaches the bottom-most
pool, since by construction it is outside the input geometry,
we consider the water to be drained. Thus, as shown in Fig-
ure 1 (g), given a pool, if there is no path such that we can
reach the bottom-most pool from the corresponding node,
the pool is a potential water trap region (whether or not
this water trap is actually formed depends upon the inflow
location). Since we can compute the volume of water each
pool can hold, we can also quantitatively evaluate a given
part orientation by summing the volumes of pools that are
determined to be water trap regions.

3. POOL SEGMENTATION
In this section, we describe the details of our pool seg-

mentation algorithm summarized above, given a 2-manifold
triangulated input mesh M.

From M, we can easily obtain the corresponding W by
flipping the orientation of the triangles in M and introduc-
ing six rectangles that represent the enlarged axis-aligned
bounding box B. Each rectangle should be split into two
triangles such that all the faces of W are represented by
triangles as well.

To implement the pool segmentation algorithm, we have
to know for which values of z beginning, ending, and merge/split
slice polygons occur. We determine all of these values of z
by tracking the evolution of the boundary of slice polygons.
Even when a slice polygon boundary appears, disappears,
merges, or splits, the corresponding slice polygon does not
necessarily appear, disappear, merge, or split (e.g. because
the boundary could correspond to a hole in a polygon). How-
ever, when a slice polygon appears, disappears, merges, or
splits, the corresponding slice polygon boundary does also
appear, disappear, merge, or split. Therefore, checking all
the values of z where a slice polygon boundary appears, dis-
appears, merges, or splits is sufficient to determine all the
values of z where beginning, ending, and merge/split slice
polygons occur.

We track the evolution of slice polygon boundaries by
modifying McMains’ sweep plane slicing algorithm [7, 8].
Observing that slice polygon boundaries appear, disappear,
merge, or split only when the sweep plane passes through one
of the vertices of the input polygonal mesh, they showed that
all such changes can be identified as long as all vertices are
checked in ascending order of z-coordinate (vertices whose
z-coordinates are the same can be processed in arbitrary
order without affecting the final result). In other words,
when W∩ psweep(z) yields any of beginning, ending, and/or
merge/split slice polygons, psweep(z) always intersects with
one of the vertices in W.

3.1 Boundary Cycles
Our modified sweep plane slicing algorithm tracks the

evolution of slice polygon boundaries and determines when
a slice polygon boundary appears, disappears, merges, or

splits. For this purpose, we manage a status structure called
the boundary cycle (Figure 2). Each boundary cycle consists
of a set of triangles. Any triangle inW is visited three times
during sweeping since each triangle has three vertices. Given
a triangle, when it is visited for the first time, the triangle
is inserted into a boundary cycle. When it is visited for
the third time, the triangle is deleted from the boundary
cycle. Since we process each vertex in ascending order of
z-coordinate, triangles currently in a boundary cycle always
intersect the current sweep plane.

Each slice polygon boundary at z is represented by a
closed polygonal chain on psweep(z). Each line segment con-
stituting the closed polygonal chain is defined by the inter-
section between psweep(z) and a triangle. Letting V (z) be
the set of vertices in W whose z-coordinate is z, a set of tri-
angles in a boundary cycle defines a slice polygon boundary
at z where V (z) = ∅ (i.e. where psweep(z) does not intersect
any vertices in W) as shown in Figure 2. Therefore, the
number of line segments constituting a slice polygon bound-
ary is equal to the number of triangles in the corresponding
boundary cycle. For such z, there is exactly one boundary
cycle for each slice polygon boundary. For z where V (z) 6= ∅
(i.e. where psweep(z) intersects with at least one vertex in
W), a set of triangles in a boundary cycle does not neces-
sarily define a slice polygon boundary since some triangles
in the boundary cycle may be parallel to the sweep plane;
the intersection between such a triangle and psweep(z) is not
a line segment. However, this limitation does not become a
problem because, to determine the type of slice polygons at
z where V (z) 6= ∅, it is sufficient to consider the slice poly-
gons just below and just above vertices in V (z) (i.e. at z−

and z+) as explained in section 2.1. During sweeping from
z = −∞ to z = +∞, we track the evolution of slice polygon
boundaries by tracking the set of triangles in each boundary
cycle.

3.1.1 Boundary Cycle Management
Boundary cycles are generated, completed, or updated

when we process each vertex in W. As McMains et al.
showed in their work, we can classify each vertex into one of
four types: beginning vertex, ending vertex, no-change ver-
tex, and merge/split vertex. A beginning vertex is where a
new boundary cycle is generated. An ending vertex is where
an existing boundary cycle is completed. A no-change ver-
tex is where some triangles may be deleted from and inserted
into an existing boundary cycle. A merge/split vertex is
where multiple boundary cycles merge into one boundary
cycle or one boundary cycle splits into multiple boundary
cycles. At a merge/split vertex, we complete existing bound-
ary cycle(s) and generate new boundary cycle(s) according
to the merge or split. Appendix A and B describe, for a given
V (z), how to classify each vertex v ∈ V (z) into one of the
four types, and generate, complete, and update boundary
cycles accordingly. When W ∩ psweep(z) yields a beginning,
an ending, or a merge/split slice polygon, psweep(z) always
intersects with a beginning, an ending, or a merge/split ver-
tex, respectively (but not vice versa).

When a new boundary cycle is generated at a beginning
vertex, a new slice polygon boundary appears (Figure 2 (b));
when an existing boundary cycle is completed at an ending
vertex an existing slice polygon boundary disappears (Fig-
ure 2 (l)); and, when multiple boundary cycles merge into
one boundary cycle or one boundary cycle splits into mul-
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Figure 2: Figures (a)-(l) illustrate how the triangles in boundary cycles are updated as the sweep plane
moves from bottom to top over a portion of W. The top drawing in each subfigure shows the set of triangles
(colored) currently in boundary cycles just after the sweep plane processes the indicated vertex; the bottom
drawing in each subfigure shows the corresponding slice polygon boundaries, with the sweep plane shown as
a rectangle.

tiple boundary cycles at a merge/split vertex, multiple slice
polygon boundaries merge into one slice polygon boundary
or one slice polygon boundary splits into multiple slice poly-
gon boundaries (Figure 2 (g)).

We update triangles in an existing boundary cycle at a
no-change vertex (Figure 2 (c)-(f) and (h)-(k)). We con-
sider two boundary cycles at different values of z to be the
same boundary cycle if one is obtained from the other by
processing only no-change vertices. Thus, a new boundary
cycle will be generated at a beginning vertex or a merge/split
vertex and an existing boundary cycle will be completed at
an ending vertex or a merge/split vertex.

3.1.2 Boundary Cycle Classification
As shown in Figure 3, a slice polygon may be bounded by

more than one slice polygon boundary. More specifically, a
slice polygon is always bounded by one outer slice polygon
boundary plus zero or more inner slice polygon boundaries.
Given a slice polygon si(z), we let ∂si(z) be the set of slice
polygon boundaries that bound si(z). We also let (∂si(z))1
be the outer slice polygon boundary and (∂si(z))j (j ≥ 2) be
the inner slice polygon boundaries of si(z). Then, ∂si(z) =
{(∂si(z))1, · · · , (∂si(z))|∂si(z)|}.

A boundary cycle is classified as either an outer bound-
ary cycle or an inner boundary cycle depending on whether
the intersection between triangles in the boundary cycle and
psweep(z) define an outer or an inner slice polygon bound-
ary. An inner boundary cycle is always associated with an
outer boundary cycle that immediately encloses the inner
boundary cycle (Figure 3).

For a given z, a boundary cycle is classified as an outer

boundary cycle or an inner boundary cycle by shooting a ray
perpendicular to the z-axis from an arbitrary point at z on
a triangle in the boundary cycle and counting the number of
intersections between the ray and triangles in W, excluding
triangles in the boundary cycle that we are testing. If it is
even, the boundary cycle is an outer boundary cycle. If it
is odd, it is an inner boundary cycle. For each inner bound-
ary cycle, we can find the outer boundary cycle immediately
enclosing the inner boundary cycle by counting the number
of intersections with triangles in each outer boundary cycle.
If there is an outer boundary cycle where the number of
the intersections is odd, the outer boundary cycle encloses
this inner boundary cycle. If multiple such enclosing bound-
ary cycles exist, the one with the closest intersection is the
immediately enclosing one.

3.2 Pool Segmentation
Now, we describe how to implement pool segmentation.

In section 2.2, we defined that a pool is the union of no-
change slice polygons bounded by either a beginning or a
merge/split slice polygon from below and either an ending
or a merge/split slice polygon from above. We have ob-
served that we can determine where these slice polygons
occur during sweeping by tracking the evolution of bound-
ary cycles. Therefore, we construct a pool according to
generation, completion, and updating of boundary cycles.
In practice, we construct a pool by finding its boundary.
Specifically, the side of a pool is defined by triangles from
W, possibly trimmed. The bottom and top face of a pool
is defined by the slice polygons where the pool is generated
and completed.
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Figure 3: Each of subfigures (b)-(e) shows the boundary cycles and the corresponding slice polygon boundaries
on the sweep plane just after processing vertices A, B, C, and, D shown in (a), respectively. Boundary cycles
1 and 3 are outer boundary cycles; Boundary cycles 2 and 4 are inner boundary cycles. For each slice
polygon, the inner boundary cycles that define the inner slice polygon boundaries are associated with the
outer boundary cycle that defines the outer slice polygon boundary. Boundary cycle 2 is associated with
boundary cycle 1; boundary cycle 4 is associated with boundary cycle 3.

Algorithm 1 InitializePool(bouter, z)

Input: bouter: an outer boundary cycle, z: z-coordinate
Output: p: pool generated at z
bouter-> pool← p
p-> T1 ← ∅
(∂s)1 ← ∅
for each triangle t ∈ bouter do

Compute tcut, the portion of t higher than z
p-> T1 ← (p-> T1) ∪ tcut
(∂s)1 ← (∂s)1 ∪ (t ∩ psweep(z+))

end for
j ← 2
for each binner ∈ inner(bouter) do
binner-> pool← p
p-> Tj ← ∅
(∂s)j ← ∅
for each triangle t ∈ binner do

Compute tcut, the portion of t higher than z
p-> Tj ← (p-> Tj) ∪ tcut
(∂s)j ← (∂s)j ∪ (t ∩ psweep(z+))

end for
j ← (j + 1)

end for
p->BottomFace ←

⋃j−1
k=1(∂s)k

return p

Each pool is defined by one outer boundary cycle plus zero
or more inner boundary cycles. Triangles in such boundary
cycles form the sides of the pools. Each of these triangles is
trimmed if a portion of the triangle is lower than the lower
bound z-coordinate and/or higher than the upper bound z-
coordinate of the pool. Intersection between the triangles
and the sweep plane at the lower/upper bound z-coordinate
define the bottom face and the top face of the pool, respec-
tively.

We generate a new pool p at a z-coordinate z where the
slice topology changes by performing the following opera-
tions that initialize the pool defined by the outer boundary
cycle bouter at z. Letting inner(bouter) be the set of enclosed
inner boundary cycles associated with bouter, first, we assign
the triangles in bouter and each binner ∈ inner(bouter) to p.

Algorithm 2 FinalizePool(bouter, z)

Input: bouter: outer boundary cycle, z: z-coordinate
Output: p: pool completed at z
p← bouter-> pool
bouter-> pool← nil
n← 1 + |inner(bouter)| // number of boundary cycles
for j = 1 to n do
Tcut ← ∅
(∂s)j ← ∅
for each triangle t ∈ (p-> Tj) do

Compute tcut, a portion of t lower than z
Tcut ← Tcut ∪ tcut
(∂s)j ← (∂s)j ∪ (t ∩ psweep(z−))

end for
p-> Tj ← Tcut

end for
p->TopFace ←

⋃n
j=1(∂s)j

return p

Then, for each triangle assigned to p at its lowest z-value,
if a portion of the triangle is lower than z+, we trim that
portion (which may be the entire triangle). Then, we de-
fine the bottom face of p by connecting the line segments
defined by intersections between the trimmed triangles and
psweep(z+). Note that, if p is defined by n boundary cycles,
the bottom face consists of n closed polygonal chains. The
bottom face corresponds to a slice polygon si(z

+) and each
of the closed polygonal chains corresponds to slice polygon
boundary (∂si(z

+))j (1 ≤ j ≤ n), where n = |∂si(z+)|. Al-
gorithm 1 gives the corresponding pseudocode for initializing
a pool. In a similar manner, we complete an existing pool p
at a z-coordinate z where the slice topology changes again by
performing analogous operations to finalize the pool defined
by the outer boundary cycle bouter at this z, the highest
z-value for the pool. The difference is that we trim the tri-
angles and define the top face at z−, instead of the bottom
face at z+ (Algorithm 2).

We describe how to construct each pool based on genera-
tion, completion, and updating of boundary cycles in detail.
For the sake of simplicity of explanation, we assume that
any slice polygon si(z) is bounded by only one outer slice
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Figure 4: Figures (a)-(l) show how pools are constructed according to generation, completion, and updating
of boundary cycles. The top drawing in each subfigure shows the set of triangles in boundary cycles just after
the sweep plane processes the indicated vertex as in Figure 2; the bottom drawing shows the corresponding
construction of pools.

polygon boundary for a moment (i.e. |∂si(z)| = 1 for any z
and inner(bouter) = ∅ for any outer boundary cycle bouter).
Thus, any boundary cycle we encounter during sweeping will
always be an outer boundary cycle.

In this case, the appearance, disappearance, merging, and
splitting of slice polygon boundaries always leads to ap-
pearance, disappearance, merging, and splitting of the cor-
responding slice polygons. Thus, for a given z where
V (z) 6= ∅, if a new boundary cycle is generated, we initialize
a new pool defined by the boundary cycle. If an existing
boundary cycle is completed, we finalize the existing pool
defined by the boundary cycle.

For a given z where V (z) 6= ∅, let G, C, and U be the sets
of new boundary cycles generated, completed, and updated
at v ∈ V (z), respectively. The specific algorithm to find G,
C, and U from V (z) is described in Appendix C. A pool is
constructed by the following rules.

For a given z where V (z) 6= ∅:

1. For each updated boundary cycle b ∈ U , we add new
triangles inserted into b at z to the pool defined by b.

2. For each completed boundary cycle b ∈ C, we finalize
the pool defined by b.

3. For each newly-generated boundary cycle b ∈ G, we
initialize the pool p defined by b.

4. Let Pinit be the set of pools initialized and Pfinal

be the set of pools finalized at z. If Pinit 6= ∅ and
Pfinal 6= ∅, for pi ∈ Pinit and for pf ∈ Pfinal, we com-
pare the bottom face of pi and the top face of pf . If
they overlap, we add a directed edge from the node
corresponding to pi to the node corresponding to pf in
the directed graph.

Algorithm 3 shows the corresponding pseudocode. In Al-
gorithm 3, InitializePool and FinalizePool were shown
in Algorithm 1 and 2, respectively. ProcessVertices takes
V (z) as input and returns a set of boundary cycles gener-
ated, completed, and updated at z, respectively (refer to
Algorithm 5). ConstructConnectivity compares the bot-
tom face(s) of generated pool(s) and the top face(s) of com-
pleted pool(s) by performing a 2D polygon intersection test.
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Algorithm 3 SimplifiedCasePoolSegmentation(V )

Input: V : set of vertices in W
where V = {V (z1), V (z2), · · · , V (zn)} (zi < zj if i < j)
// V (zi) is a set of vertices whose z-coordinate is zi
for i = 1 to n do
Pinit ← ∅
Pfinal ← ∅
(G, C, U) ← ProcessVertices(V (zi))
for each boundary cycle b ∈ U do
b-> pool-> T1 ← (b-> pool-> T1) ∪ (b-> Tnew(zi))

end for
for each boundary cycle b ∈ C do
Pfinal ← Pfinal∪ FinalizePool(b, zi)

end for
for each boundary cycle b ∈ G do
Pinit ← Pinit∪ InitializePool(b, zi)

end for
if Pinit 6= ∅ and Pfinal 6= ∅ then

ConstructConnectivity(Pinit, Pfinal)
end if

end for

A series of steps to construct pools based on these rules
is illustrated in Figure 4. When a new boundary cycle is
generated, we initialize a new pool defined by the boundary
cycle (Figure 4 (b)). In this example, since the intersection
between the triangles and the corresponding sweep plane be-
comes a point, no triangles are trimmed and the bottom face
consists of a single point. When the triangles in the bound-
ary cycles are updated, we assign the inserted triangles to
the pool defined by their boundary cycles (Figure 4 (c)-(f)
and (h)-(k)). When one boundary cycle splits into multiple
boundary cycles (Figure 4) (g)), we finalize the pool de-
fined by the existing boundary cycle (the purple pool). The
portions of the triangles above the z-coordinate of the indi-
cated vertex are trimmed and the set of the corresponding
intersection line segments defines the top face of the final-
ized pool. At the same time, we initialize new pools defined
by the new boundary cycles (the yellow and blue pools).
The triangles in the boundary cycles after processing the
merge/split vertex indicated in the top of subfigure (g) are
assigned to the pools. The portions of the triangles below
the z-coordinate of the indicated vertex are trimmed; the
sets of corresponding intersection line segments define the
bottom face of the newly generated pools. When a bound-
ary cycle is completed, we finalize the pool defined by the
boundary cycle (Figure 4 (l)). In this example, since the
intersection between the triangles in the pool and the cor-
responding sweep plane becomes a point, no triangles are
trimmed and the top face consists of a single point.

3.2.1 Pool Segmentation, General Case
We now remove the simplifying assumption that each slice

polygon is bounded by only one outer slice polygon bound-
ary. In the general case, a pool is defined by one outer
boundary cycle and zero or more inner boundary cycles. Un-
like in the previous simplified case, the appearance, disap-
pearance, merging, or splitting of slice polygon boundaries
does not necessarily lead to the appearance, disappearance,
merging, and splitting of the corresponding slice polygons
for the general case. For example, in Figure 3, the appear-
ance of the inner slice polygon boundary does not lead to the

appearance of a new slice polygon; the appearance of the in-
ner slice polygon boundary just changes the topology of the
existing slice polygon. However, to simplify our implemen-
tation (as well as the volume computation described below
in section 4.1), we segmentW into pools whenever a bound-
ary cycle is generated or completed (which is equivalent to
saying whenever the topology of a slice polygon changes).
As stated in section 3, when a slice polygon appears, dis-
appears, merges, or splits, the corresponding slice polygon
boundary also appears, disappears, merges, or splits, and
thus at least one boundary cycle is generated or completed.
Therefore, the modified segmentation rule satisfies our orig-
inal pool segmentation criteria.

Thus, a pool is initialized and finalized when an outer
boundary cycle defining the pool is generated and completed
in the same manner as in the simplified case. In addition,
given a pool, every time one of the inner boundary cycles
defining the pool is generated or completed, we finalize the
pool and initialize a new one. Using this segmentation
rule, each pool is entirely defined by the same set of bound-
ary cycles, i.e. the set of boundary cycles when the pool is
initialized and finalized is the same (although their trian-
gles will have changed if any no-change vertices are on the
boundary between the bottom and top face).

Subfigures 5 (a)-(e) show the boundary cycles just before
processing the indicated vertices and the pools already com-
pleted just after processing the indicated vertices. In Figure
5 (a), boundary cycle 1, an inner boundary cycle, completes.
We finalize the first pool defined by outer boundary cycle 2
immediately enclosing boundary cycle 1. Since outer bound-
ary cycle 2 is not completed, we initialize a new pool defined
by outer boundary cycle 2. In Figure 5 (b), boundary cy-
cle 3, an inner boundary cycle, is generated. We associate
boundary cycle 3 with boundary cycle 2, its enclosing bound-
ary cycle. Since boundary cycle 2 has already defined a pool
not finalized yet, we finalize that pool, and initialize a new
pool defined by boundary cycle 2 and boundary cycle 3. In
Figure 5 (c), boundary cycle 2 splits into boundary cycle 4
and boundary cycle 5. We finalize the existing pool defined
by boundary cycle 2. Since inner boundary cycle 3, imme-
diately enclosed by boundary cycle 2, is not completed, we
reassociate boundary cycle 3 with boundary cycle 4, which
immediately encloses boundary cycle 3 just above the indi-
cated vertices. We initialize a new pool defined by bound-
ary cycle 4 and boundary cycle 3 (immediately enclosed by
it), and boundary cycle 5, respectively. In Figure 5 (d),
boundary cycle 6, an inner boundary cycle, and boundary
cycle 7, an outer boundary cycle, are generated. We asso-
ciate boundary cycle 6 with boundary cycle 5, its enclosing
boundary cycle. Since boundary cycle 5 has already defined
a pool not finalized yet, we finalize that pool, and initial-
ize a new pool defined by boundary cycle 5 and boundary
cycle 6. We also initialize a new pool defined by boundary
cycle 7. In Figure 5 (e), boundary cycle 4 and boundary
cycle 3 (immediately enclosed by it), and boundary cycle
5 and boundary cycle 6 (immediately enclosed by it) are
completed. We finalize the pool defined by these boundary
cycles.

Now, we give the algorithm to implement this segmenta-
tion rule. For a given z where V (z) 6= ∅, let Gouter and
Ginner be the sets of new outer and inner boundary cy-
cles, respectively, generated at v ∈ V (z), and Couter and
Cinner be the sets of existing outer and inner boundary cy-
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Figure 5: Figures (a)-(e) show how pools are constructed according to generation, completion, and updating
of boundary cycles in general pool segmentation. We segment W into pools where the topology of slice
polygon changes. The top drawing in each subfigure shows the boundary cycles just before processing the
indicated vertices; the bottom drawing shows the pools already completed just after processing the indicated
vertices. The line segments shown in orange indicate the bottom face and top face of just completed pools.
Notice that, for each pool, the bottom face and top face is defined by the triangles in the same set of boundary
cycles.

cles, respectively, completed at v ∈ V (z). Then, a pool is
constructed by the following rules.

For a given z where V (z) 6= ∅:

1. For each updated boundary cycle b ∈ U , we add new
triangles inserted into b at z to the pool defined by b.

2. For each completed outer boundary cycle bouter ∈ Couter,
we finalize the pool defined by bouter. We let inner(bouter)
be the set of inner boundary cycles immediately en-
closed by bouter at z−. For each binner ∈ inner(bouter),
if binner /∈ Cinner, we add binner to Ginner (Figure 5
(c)(e)).

3. For each completed inner boundary cycle binner ∈ Cinner,
we let bouter be the outer boundary cycle immedi-
ately enclosing binner at z−. We dissociate binner from
bouter. If the pool defined by bouter is not finalized,
before the dissociation, we finalize the pool and add
bouter to Gouter (Figure 5 (a)).

4. For each newly generated inner boundary cycle binner ∈
Ginner, we find the outer boundary cycle bouter imme-
diately enclosing binner at z+. We associate binner

with bouter. If the pool defined by bouter is not final-
ized, before the association, we finalize the pool and
add bouter to Gouter (Figure 5 (b)(d)).

5. For each newly generated outer boundary cycle bouter ∈
Gouter, we initialize a new pool p defined by bouter
and its inner boundary cycles immediately enclosed
by bouter at z+.

6. Let Pinit and Pfinal be the sets of pools initialized and
finalized at z, respectively. If Pinit 6= ∅ and Pfinal 6= ∅,
for pi ∈ Pinit and for pf ∈ Pfinal, we compare the bot-
tom face of pi and the top face of pf . If they overlap,
we add a directed edge from the node corresponding
to pi to the node corresponding to pf in the directed
graph.

Algorithm 4 shows the corresponding pseudocode. Classi-
fyBoundaryCycle classifies each newly generated bound-
ary cycle as either an outer boundary cycle or an inner
boundary cycle using the method described in 3.1.2.

4. PREDICTING WATER TRAP REGIONS
After completing the sweep from z = −∞ to z = +∞, the

space W is segmented into pools that are connected to each
other if their bottom faces and top faces are overlapping.
As we described in section 2.3, given a pool, if there is no
path from the corresponding node to the node corresponding
to the bottommost pool, the pool is a potential water trap
region (depending on inflow location). The bottommost pool
corresponds to the first pool created during sweeping.

Finding the pools that are potential water trap regions is
straightforward. From the node corresponding to the bot-
tommost, we traverse the graph in the opposite direction of
the graph edges until we have visited all reachable nodes.
The nodes we cannot reach from the node corresponding to
the bottommost pool represent potential water trap regions.
For the traversal from the bottommost node, we do not have
to visit the same node twice; therefore, the time complex-
ity of the procedure is linear with respect to the number of
pools.

4.1 Quantitative Evaluation of a Part Orien-
tation

Since we can compute the volume of water each pool can
hold, we can also quantitatively evaluate a given part orien-
tation by summing the volumes of pools that are determined
to be water trap regions.

The volume of an arbitrary polyhedron defined by a set
of triangles T can be computed using equation (1), where
each triangle t ∈ T is defined by the points vt1, vt2, vt3
ordered counterclockwise when viewed from the exterior of
the polyhedron.
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Algorithm 4 GeneralCasePoolSegmentation(V )

Input: V : set of vertices in W
where V = {V (z1), V (z2), · · · , V (zn)} (zi < zj if i < j)
// V (zi) is a set of vertices whose z-coordinate is zi
for i = 1 to n do

(G, C, U) ← ProcessVertices(V (zi))
(Ginner, Gouter) ← ClassifyBoundaryCycle(G, z+)
Couter ← set of outer boundary cycles in C
Cinner ← set of inner boundary cycles in C
Pinit ← ∅
Pfinal ← ∅
for each b ∈ U do

// suppose b is the j-th boundary cycle of b-> pool
b-> pool-> Tj ← (b-> pool-> Tj) ∪ (b-> Tnew(zi))

end for
for each bouter ∈ Couter do
Pfinal ← Pfinal∪ FinalizePool(bouter, zi)
for each binner ∈ inner(bouter) do

if binner /∈ Cinner then
Ginner ← Ginner ∪ binner

end if
end for

end for
for each binner ∈ Cinner do
bouter ← outer boundary cycle immediately enclosing
binner at z−

if bouter-> pool 6= nil then
Pfinal ← Pfinal∪ FinalizePool(bouter, zi)
Gouter ← Gouter ∪ bouter

end if
Dissociate binner from bouter

end for
for each binner ∈ Ginner do
bouter ← outer boundary cycle immediately enclosing
binner at z+

if bouter-> pool 6= nil then
Pfinal ← Pfinal∪ FinalizePool(bouter, zi)
Gouter ← Gouter ∪ bouter

end if
Associate binner with bouter

end for
for each bouter ∈ Gouter do
Pinit ← Pinit∪ InitializePool(bouter, zi)

end for
if Pinit 6= ∅ and Pfinal 6= ∅ then

ConstructConnectivity(Pinit, Pfinal)
end if

end for

V =
1

6

∑
t∈T

(vt1 × vt2 · vt3) (1)

Our pools are bounded on the side by original and trimmed
triangles from W and on the bottom and top by 2D poly-
gons, possibly with holes. Given a pool defined by n bound-
ary cycles, we let the vertices constituting the i-th closed
polygonal chain of the bottom face be lij(1 ≤ j ≤ pi),
and the vertices constituting the i-th closed polygonal chain
of the top face be uij(1 ≤ j ≤ qi), with the vertices of
the outer and inner slice polygon boundaries enumerated
in counter-clockwise and clockwise order, respectively, when

Table 1: Timing data for pool segmentation and di-
rected graph construction on various models.

part 1cylinder head1cylinder head1cylinder head2cylinder head2

(orientation 1)(orientation 2)(orientation 1)(orientation 2)

# vertices1,294 104,310 104,310 144,546 144,546

# pools 77 824 706 876 1552

time (sec.) 0.07 0.827 2.661 2.005 3.855

viewed from the exterior of the pool.
Then the volume of this pool can be computed using equa-

tion (2):

Vpool =
1

6
{

∑
t∈pool

(vt1 × vt2 · vt3) +
n∑

i=1

pi−1∑
j=2

(li1 × lij · lij+1)

+
n∑

i=1

qi−1∑
j=2

(ui1 × uij · uij+1) } (2)

5. RESULTS AND DISCUSSION
Figure 6 shows the result of our segmentation and the

identified water trap regions using the presented method on
an industrial cylinder head model.

Table 1 shows timing data for pool segmentation and di-
rected graph construction on the part shown in Figure 6 and
other models. The timing was performed on a computer
with a 2.66 GHz Intel Core i7 CPU with 4GB of memory.
Running times increase with the number of vertices but not
necessarily with the number of generated pools. In our ex-
perience, the complexity of the geometry of each pool highly
matters. For both cylinder head models, timing is shown for
the same part in different orientations. Note that the same
part in a different orientation can have twice as many pools,
and also three times the running time for pool segmenta-
tion and graph construction. Once we obtain segmented
pools and the corresponding directed graph, our algorithm
to identify water trap regions for a given inflow location
takes less than a millisecond, fast enough for even the most
complex models.

The directed graph our algorithm constructs has by na-
ture more information than the corresponding Reeb graph of
a 3-manifold with boundary with respect to the height func-
tion. While our segmentation rule takes into account all the
topology changes of 2D slices, the Reeb graph does not cap-
ture them; the Reeb graph only captures the merging and
splitting of connected components. Given a geometry and
our directed graph, we can easily obtain the corresponding
Reeb graph by deleting nodes that have only one node con-
nected above and one node connected below, respectively.

6. CONCLUSION
In this paper, we proposed a new pool segmentation data

structure and algorithm based on topological changes of 2D
slices with respect to gravity direction. We showed that we
can predict potential water trap regions of a given geome-
try by analyzing the directed graph based on the segmented
pools. In the future, we plan to utilize this data structure
to accelerate physics-based simulation of fluid flow inside
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Figure 6: We applied our algorithm to a mechani-
cal workpiece shown in (a). (b) Pool segmentation
of the workpiece. Pools are assigned random col-
ors. (c) Water trap regions of the workpiece. Note
that we do not show the pools bounded by triangles
which come from the corresponding bounding box
for visualization purpose in this figure.

mechanical parts with complex geometry. Although recent
advances in CPUs and GPUs make real-time fluid flow sim-
ulation possible in a simple computational domain, perform-
ing such simulation in a complex domain in real-time is still
challenging. We believe that our pool segmentation data
structure may also prove useful for other applications ana-
lyzing fluid flow inside complex geometry.
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APPENDIX
We manage boundary cycles by modifying the data structure
introduced by McMains’ sweep plane slicing algorithm [8].

A. VERTEX CLASSIFICATION IMPLEMEN-
TATION

We implemented the algorithm using a half-edge data
structure [9]. We represent each edge inW by two halfedges
that are mated. For each vertex v, we define a set of halfedges
extending from v, called the disk cycle disk(v), in which the
halfedges are ordered clockwise when viewed from the exte-
rior of W and connected in the form of a circular double-
linked list, as shown in Figure 7.
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Figure 7: Given a vertex v, the disk cycle disk(v) is a
set of halfedges extending from v. The halfedges in
disk(v) are ordered clockwise when viewed from the
exterior of W and connected in the form of circular
double-linked list.

Figure 8: (a) Beginning Vertex (b) ending vertex
(c) no-change vertex (d) merge/split vertex. The
bottom row shows the configuration of halfedges in
the corresponding disk cycle. We call the first and
last ending halfedge of consecutive ending halfedges
in the disk cycle FirstEnd and LastEnd.

Each halfedge has a status that is either beginning or end-
ing. Initially, all halfedges in W are set as beginning. The
status of a halfedge changes to ending halfedge when the des-
tination vertex of the halfedge is processed during sweeping.

When we process a vertex v during sweeping, the type
of the vertex is determined by the status of the halfedges
in disk(v) (Figure 8). If all the halfedges are beginning
halfedges, the vertex is a beginning vertex ; if all halfedges
are ending halfedges, the vertex is an ending vertex. When a
vertex has both beginning halfedges and ending halfedges, if
all beginning halfedges appear consecutively in its disk cycle
(and thus is, all ending halfedges also appear consecutively),
the vertex is a no-change vertex ; otherwise, the vertex is a
merge/split vertex.

B. BOUNDARY CYCLES IMPLEMENTATION
As explained in 3.1, a boundary cycle consists of a set of

triangles. In our implementation, halfedges are also included
in boundary cycles. Given a halfedge, when its origin vertex
is processed, if the halfedge’s mate is not in any boundary
cycles, the halfedge is inserted into a boundary cycle. If the
halfedge’s mate is in a boundary cycle already, the mate of
the halfedge is deleted from that boundary cycle. From the
viewpoint of vertex v, we are inserting beginning halfedges in
disk(v) into boundary cycles and deleting the mate of each
ending halfedge in disk(v) from the corresponding boundary
cycle.

Since we process each vertex in ascending order of z-
coordinate, halfedges currently in boundary cycles are al-

ways intersecting with the sweep plane just as triangles cur-
rently in boundary cycles do. Halfedges in each boundary
cycle are ordered and connected in the form of a circular
double-linked list such that, if we compute the intersection
points between these halfedges and psweep(z) and connect
them in that order, we can obtain a closed polygonal chain
representing the same slice polygon boundary that the tri-
angles in the same boundary cycle represent at z where
V (z) = ∅.

When we process each vertex inW, we first replace halfedges
in the corresponding boundary cycles. Then, according to
the replacement, we replace the triangles in those boundary
cycles. We generate, complete, and update boundary cycles
depending on the vertex type we encounter during sweeping
as follows.

B.1 Beginning Vertex
At a beginning vertex v, we generate a new boundary

cycle. The halfedges in disk(v) are directly treated as the
halfedges in the new boundary cycle (recall that both halfedges
in a disk cycle and halfedges in a boundary cycle are con-
nected in the form of circular double-linked lists). Then,
triangles adjacent to each halfedge in disk(v) are inserted
into the new boundary cycle.

B.2 Ending Vertex
At an ending vertex v, we complete the existing boundary

cycle to which the mates of halfedges in disk(v) belong.

B.3 No-change Vertex
At a no-change vertex v, we update halfedges and triangles

in the existing boundary cycle. First, we identify FirstEnd
and LastEnd, which are the first and last ending halfedge of
the consecutive ending halfedges in disk(v) (Figure 8 (c)).
Then, we update pointers as follow.

FirstEnd->cyclePrev->cycleNext ← FirstEnd->Mate->cycleNext

LastEnd->Mate->cyclePrev->cycleNext ← LastEnd->cycleNext

FirstEnd->Mate->cycleNext->cyclePrev ← FirstEnd->cyclePrev

LastEnd->cycleNext->cyclePrev ← LastEnd->Mate->cyclePrev

After this pointer update, we pick up one of the beginning
halfedges in disk(v) and traverse the circular linked-list from
this beginning halfedge until we revisit it. The halfedges we
have visited during the traversal are the set of appropriately
ordered halfedges in the boundary cycle after processing v.

Finally, we check each triangle incident to v. If the triangle
is visited for the first time, the triangle is inserted into the
boundary cycle. If the triangle is visited for the third time,
the triangle is deleted from the boundary cycle.

B.4 Merge/split Vertex
At a merge/split vertex v, we first complete all the existing

boundary cycle(s) to which the mates of ending halfedges in
disk(v) belong. A disk cycle of a merge/split vertex has
multiple sets of consecutive ending halfedges (Figure 8 (d)).
First, we identify the FirstEnd and LastEnd of each set.
Then, we update pointers in the same manner as for a no-
change vertex for each FirstEnd/LastEnd pair (Figure 9).

After the pointer updates, we pick up one of the beginning
halfedges in disk(v) and traverse the circular linked-list from
the beginning halfedge until we revisit it. The halfedges
we have visited during the traversal are an ordered set of
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Figure 9: (a) Model with merge/split vertex v
(indicated vertex). Blue edges indicate beginning
halfedges and orange edges indicate ending halfedges
in disk(v). (b) The halfedges in disk(v) (connected
with magenta lines) and the halfedges in the exist-
ing boundary cycle (connected with green lines). (c)
The change of the pointers after processing the first
pair of FirstEnd and LastEnd. (d) The change of the
pointers after processing the second pair of FirstEnd
and LastEnd (note that FirstEnd and LastEnd are
the same halfedge here in this example). After both
sets of pointer changes, there are two new boundary
cycles: one whose halfedges we can traverse from
beginning halfedge J or K belong and one whose
halfedges we can traverse from beginning halfedge
L or M belong. The mates of halfedges A, E, and, F
are no longer in any boundary cycle.

halfedges that belong to a new boundary cycle after pro-
cessing v. If there is a beginning halfedge in disk(v) that we
did not visit during this traversal, then we traverse the cir-
cular linked-list from this beginning halfedge until we revisit
it. The halfedges we visited during the subsequent traversal
are an ordered set of halfedges that belong to another new
boundary cycle after processing v. We repeat this proce-
dure until we determine the boundary cycles to which all
the beginning halfedges in disk(v) belong.

Finally, for each new boundary cycle, triangles adjacent
to each halfedge in the boundary cycle are inserted into the
corresponding boundary cycle.

C. FINDING BOUNDARY CYCLES GENER-
ATED, COMPLETED, AND, UPDATED

Finally, we show the pseudocode ProcessVertices(V (z))
that takes V (z) as an input and returns a set of boundary
cycles generated, completed, and updated at z in Algorithm
5. In the pseudocode, ProcessBeginningVertex(v) gen-
erates the new boundary cycle b and returns it.
ProcessEndingVertex(v) returns the existing boundary
cycle b completed at v. ProcessMergeSplitVertex(v)
changes the pointers of the halfedges in disk(v) (as detailed
in B.4). According to the result, we assign new triangles to
each of the generated boundary cycles, and the set of com-
pleted boundary cycles BC and the set of generated bound-
ary cyclesBG at v are returned. ProcessNoChangeVertex(v)
changes the pointers of the halfedges in disk(v) and updates
the triangles in the existing boundary cycle b accordingly.
After the updates, b and triangles inserted into b at v are
returned.

Note that there might be boundary cycles generated at
one vertex in V (z) and completed at another vertex also
in V (z). We call this type of boundary cycle a “degener-
ate” boundary cycle. Since a degenerate boundary does not

Algorithm 5 ProcessVertices(V (z))

Input: V (z) set of vertices whose z-coordinate is z
Output: G set of boundary cycles generated at z, U set
of boundary cycles updated at z, C set of boundary cycles
completed at z
G← ∅
C ← ∅
U ← ∅
for each v ∈ V (z) do

if v is a beginning vertex then
b ← ProcessBeginningVertex(v)
G← G ∪ b.

else if v is an ending vertex then
b ← ProcessEndingVertex(v)
C ← C ∪ b.

else if v is a merge/split vertex then
(BC , BG) ← ProcessMergeSplitVertex(v)
C ← C ∪BC .
G← G ∪BG.

else if v is a no-change vertex then
(b, Tinserted)← ProcessNoChangeVertex(v)
// assuming initially (b-> Tnew(z)) = ∅
b-> Tnew(z)← (b-> Tnew(z)) ∪ Tinserted

U ← U ∪ b.
end if

end for
D ← G ∩ C // D: set of degenerate boundary cycles
G← G \D
C ← C \D
U ← U \ (G ∪ C ∪D)
return (G, C, U)

define a pool, we remove degenerate boundary cycles from
the set of boundary cycles returned by the function. Simi-
larly, there might be boundary cycles generated at one ver-
tex in V (z) and updated at another vertex in V (z). We treat
such boundary cycles as generated boundary cycles, not as
updated boundary cycles. In a similar manner, we treat
boundary cycles updated at a vertex in V (z) and completed
at another vertex in V (z) as completed boundary cycles, not
as updated boundary cycles. Therefore, U , the set of bound-
ary cycles updated at z, are the ones neither generated nor
completed at z.

Notice that no triangle parallel to psweep(z) is in any
boundary cycles returned by the function since a triangle
is deleted from the boundary cycle once the triangle is vis-
ited three times; all vertices of such a triangle are processed
in V (z). Therefore, triangles parallel to psweep(z) whose
corresponding boundary cycles are generated or completed
at z do not constitute the boundary of the pool, since such
triangles will overlap the bottom face or the top face of the
pool. Whereas such triangles are redundant to define the
pool boundary, on the other hand, triangles (introduced at
no-change vertices) that are parallel to psweep(z) whose cor-
responding boundary cycles are not generated nor completed
at z do constitute the pool boundary.
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