
Testing an Axis of Rotation for 3D Workpiece Draining

Yusuke Yasui
UC Berkeley

Sara McMains
UC Berkeley

Abstract

Given a triangular mesh defining the geometry of a 3D workpiece
filled with water, we propose an algorithm to test whether, for an ar-
bitrary given axis, the workpiece will be completely drained under
gravity when rotated around the axis. Observing that all water traps
contain a concave vertex, we solve our problem by constructing and
analyzing a directed “draining graph” whose nodes correspond to
concave vertices of the geometry and whose edges are set accord-
ing to the transition of trapped water when we rotate the workpiece
around the given axis. Our algorithm to check whether or not a
given rotation axis drains the workpiece outputs a result in about a
second for models with more than 100,000 triangles.

CR Categories: J.6 [Computer Applications]: COMPUTER-
AIDED ENGINEERING—Computer-aided design (CAD);
J.6 [Computer Applications]: COMPUTER-AIDED
ENGINEERING—Computer-aided manufacturing (CAM)

Keywords: draining, rotation axis, directed graph, water traps,
cleanability, manufacturing

1 Introduction

Cleaning engine components to remove hard particle contaminants
introduced during the manufacturing process is becoming a signif-
icant issue for industry [Arbelaez et al. 2008; Avila et al. 2006;
Berger 2006]. Manufacturing byproducts such as chips from ma-
chining and sand from casting are commonly cleaned off the sur-
faces of workpieces using high pressure water-jets. However, if
the workpiece has complicated concave regions, the cleaning water
may not easily drain from the workpiece. In order to minimize the
subsequent draining time, our industrial partner first mounts work-
pieces on a slowly rotating carrier so that gravity can drain out as
much water as possible. Their current set-up rotates in one direc-
tion (either clockwise or counterclockwise) around a single axis ori-
ented parallel to the ground. Our ultimate goal is to find a rotation
axis for a given workpiece geometry such that when the workpiece
is first oriented with this axis parallel to the ground and then ro-
tated slowly around the axis, all water drains from all voids of the
workpiece. As a first step toward this goal, we propose an algo-
rithm to check whether or not clockwise or counterclockwise ro-
tation around a given axis in 3D space can drain all trapped water
from a workpiece whose geometry is represented as a triangulated
mesh.

1.1 Related Work

The most straightforward approach to solve this problem might be
using a general-purpose physics based approach such as CFD. Al-
though the computational power of CPUs and GPUs is increasing
every year, the computational cost of such a physics-based approach
is still too expensive to be suitable for applications that require in-
teractivity. Since we would like to provide interactive feedback to
designers, we need a real-time algorithm that does not rely on a
computationally expensive method that can take hours to converge.

In the computer graphics community, several efforts have been
made to accelerate algorithms borrowed from computational sci-
ences while maintaining plausibility [Müller et al. 2008]. The first
real-time GPU implementation of fluid simulation using a regular
grid of cubical cells was reported in [Nguyen 2007]. Unfortunately,
because the algorithm accuracy is dependent on the 3D grid reso-
lution, it is not appropriate for our complex target geometries since
we would be required to split space into a tremendous number of
grid cells to perform the simulation reliably. To avoid this issue,
particle-based approaches using smoothed particle hydrodynamics
(SPH) are popular for real-time simulations since they do not re-
quire a grid throughout the whole domain [Müller-Fischer et al.
2003; Müller-Fischer et al. 2007]. Although particle systems can
produce attractive visual results, they cannot match the accuracy of
fluid simulation unless the number of the simulated particles is very
high, but when the number of particles increase, the performance
suffers.

Since performing physics-based simulation in realtime on compli-
cated geometry is still challenging, we are motivated to devise an
algorithm to solve our problem geometrically to reduce computa-
tional cost. It combines analysis of (free) fluid flow and accessibil-
ity from a geometric perspective.

In the case of fluid flows inside complex geometric models, a sim-
ilar problem, considering the problem of draining water (a single
particle) out of a closed polygon by rotating the shape in 2D space,
was introduced by Aloupis et al. [Aloupis et al. 2008]. Given a
closed polygon and trapped water particles inside of it, they pro-
posed an algorithm to find how many holes must be punctured to
drain them. Letting n be the number of vertices of a given poly-
gon, they showed that bn/6c holes are sometimes necessary and
dn/4e holes are sufficient to drain any polygon. Then, they pro-
posed an O(n2 log n) algorithm to find the minimum number of
holes needed to drain.

Geometric analysis has been developed to study flow of liquid in a
mold as well. Bradley and Heinemann [Bradley et al. 1993] pro-
posed geometric analysis of the mold to develop shape factors in-
dicating the effect of the geometry of the mold on fluid flow un-
der gravity. Bose et al. [Bose et al. 1998] considered the problem
of filling a mold from a purely geometric perspective in 3D space
such that, when it is filled, no air pockets and ensuing surface de-
fects arise. They proposed a linear time algorithm to check whether
a given polyhedron can be completely filled without forming air
pockets in a fixed orientation. They also proposed an O(n2) algo-
rithm to find the most favorable orientation for a given polyhedron.

A similar problem to ours arises in planning for 4-axis NC machin-
ing, how to find a rotation axis that maximizes “visible” surface in
a single setup, which was investigated by Tang et al. [Tang et al.

Figure 1: We assume that we can approximate a volume of water
(shown in (a) for a 2D example) by a set of water particles (shown
in (b)). A water trap is a set of water particles directly or indirectly
touching each other and some of which are touching the input ge-
ometry. In this example, two water traps are formed.

Figure 2: (a): Concave vertex v (b): The diagram showing Tv of
v.

1998]. Generally speaking, to manufacture a desired shape, multi-
ple setups are required; however, the setup is time-consuming and
therefore the number of setups should be minimized. To consider
this problem, visibility plays a vital role. Woo developed the con-
cept of visibility maps to represent and compute accessibility [Woo
1994].

1.2 Assumptions and a Key Observation

We assume that we can approximate a volume of water by a set of
water particles whose viscosity is negligibly small. We also assume
that the rotation is slow enough so that the water particles reach
equilibrium for each orientation through which we rotate, and that
the particles move only under the effect of gravity (assuming that
any other forces such as friction force are negligible).

We define a water trap in a particular orientation as a connected
volume of undrained water, which we approximate by a set of water
particles directly or indirectly touching each other (Figure 1).

The key observation for our problem is that, for each water trap,
there is always at least one concave vertex of the input mesh such
that some of its incident edges and faces are touching water parti-
cles constituting the water trap. Based on this observation, our goal
is to drain all the concave vertices of an input mesh since this is
equivalent to draining all water traps from all voids of the work-
piece.

In the next section, we describe an overview of our approach, go-
ing through a 2D example to introduce our directed draining graph
method. Then, in sections 3 and 4, we describe how we actually
construct and analyze the draining graph for a 3D geometry and
arbitrary 3D rotation axis.

2 Approach and Theory

To begin, we discuss a simplified case using a 2D example.

2.1 Limit case: each water trap is represented by a sin-
gle water particle

First, we consider the limit case that each water trap consists of only
one water particle. Recall that a water trap can only be formed at a
concave vertex.

For each concave vertex v, we consider gravity directions such that,
if a water particle is at v, it will be trapped. In the 2D case, any
gravity direction can be described as a point on the Gaussian cir-
cle (a circle whose radius is one and center is at the origin). When
we rotate a workpiece, the gravity direction moves relative to the
workpiece along the Gaussian circle. For each concave vertex v,
we define a space Tv on the Gaussian circle consisting of gravity
directions such that, if a water particle is at v, it will be trapped.
Figure 2 shows a specific example. In the 2D case, each of the two
gravity directions gCCW and gCW bounding Tv are orthogonal to
the two edges incident to v. For a workpiece orientation with cor-
responding gravity direction currently in Tv , when the workpiece
rotates far enough that the gravity direction coincides with gCCW

(respectively, gCW), the trapped water particle leaves v and moves
along the edge towards A (respectively, B).

We construct a directed draining graph whose nodes correspond to
the concave vertices. Each node has two outgoing edges, for clock-
wise and counterclockwise rotation, that point to the nodes repre-
senting the concave vertices where the trapped water will ultimately
settle when the workpiece is rotated clockwise and gravity coin-
cides with gCW or counterclockwise and gravity coincides with
gCCW . If the water particle trapped at a vertex exits the workpiece
once it is rotated so that gravity coincides with gCW or gCCW , the
corresponding edge is set to point to a node labeled “out” represent-
ing the workpiece exterior. An example of a draining graph for a
2D geometry is shown in Figure 3.

The draining graph is constructed as follows. For each concave
vertex, we initialize a corresponding node in the draining graph.
Then, we compute the two gravity directions when a water particle
trapped at the concave vertex leaves it under clockwise and coun-
terclockwise rotation. These gravity directions (the bounds of Tv)
are shown in a diagram next to each node in Figure 3. Finally, we
trace the path of a trapped water particle under both of these grav-
ity direction to determine in what concave vertex it settles for each,
adding a graph edge labeled as CW or CCW that points to the
corresponding node.

For each concave vertex, if there is a path consisting of edges with
the same direction label from the corresponding node to the node
labeled as “out,” then we can drain the trapped water particle at
that concave vertex through concave vertices corresponding to the
nodes along the path by rotating in the given direction. For exam-
ple, there is a path “A → B → C → D → out” in Figure 3
corresponding to the draining sequence shown in Figure 4. There is
also a path “A → D → out.” But we cannot drain using this path
because it corresponds to counterclockwise rotation from A to D
and clockwise rotation from D to out. This violates our restriction
that we can rotate around an axis in one direction only. We can also
see that when water is trapped at any one of A, B, C, or D, we
cannot drain by counterclockwise rotation because there is no path
from the nodes corresponding to any of these vertices to “out”; this
is physically consistent.

2.2 General case: each water trap is represented by a
set of water particles

In the previous subsection, we took as our premise the limit case
that each water trap consists of only one water particle, and pro-

Figure 3: A sample geometry in 2D and the corresponding draining graph. The diagram next to each graph node shows the two gravity
directions that let a water particle trapped at the corresponding concave vertex leave for the other concave vertices. For each node, when a
current gravity direction is in Tv , if a water particle is at the corresponding concave vertex, it will be trapped.

Figure 4: (a) The transition of a water particle by a rotation corre-
sponding to the CW path “A → B → C → D → out” in Figure
3. (b) The corresponding drainage of water.

vided the approach to solve the corresponding draining problem.
We now show that if a solution exists for this limit case, it is also a
solution for the general draining problem; that is, the case that each
water trap consists of a set of water particles.

Suppose a water trap is currently formed at concave vertex v. For
the general draining problem, after v is drained, not all the water
particles constituting the original water trap will necessarily form a
new water trap at the same concave vertex (see Figure 5); however,
the key observation is that the last water particle to leave the con-
cave vertex (we call this last particle the core particle of the water
trap) moves in the same manner as a water particle approximating
the water trap by only one particle. For example, suppose that a
water trap is currently formed at a given concave vertex v as shown
in Figure 5 (a). Figure 5 (b) shows draining when we approximate
a water trap by only one particle and (c) shows draining when we
approximate a water trap by a set of particles (general case). In the
general case, when we start to rotate an input geometry, water par-
ticles constituting the water trap start to leave v and form another
water trap at a different concave vertex (or may exit the geome-
try). As we continue to rotate, when one of the edges incident to v
becomes perpendicular to the gravity direction (i.e. parallel to the
ground), the core particle of the water trap leaves v. As shown in
Figure 5 (c), at the point when v is completely drained, water par-
ticles constituting the original water trap may constitute different
water traps after a rotation; however, a core particle moves in the
same manner as a water particle approximating a water trap by only
one particle.

Now we show that the approach using the draining graph for the
single-particle case works for general draining problems, too, as-

Figure 5: (a) A water trap is formed at concave vertex v. (b) The
movement of a water particle when we approximate the water trap
by only one particle. After v is drained, a new water trap is formed
at concave vertex Q. (c) The movement of water particles when we
approximate the water trap by a set of particles. After v is drained,
new water traps are formed at P and Q. A core particle shown in
red settles at a water trap at the same concave vertex where the
particle in case (b) settles.

suming we rotate enough times. To see this, let us consider a sim-
ple example of a draining graph with only 4 nodes, A, B, C, and
out, with three CW directed edges “C → B → A → out.” For
each 360-degree clockwise rotation, at least a core particle at A is
drained (note that there is no guarantee that all the water particles at
A exit the geometry). If there are remaining water particles (water
traps), each of them exists at B or C because a water trap is always
formed at a concave vertex. There is a path from C to B; therefore, a
core particle at C goes to B if a water trap is formed at C. There is a
path from B to A; therefore, a core particle at B goes to A if a water
trap is formed at B. This implies that as long as there are remain-
ing water particles, one of them must become a core particle at A
and be drained in each 360-degree rotation. The number of trapped
water particles never increases; therefore, as long as there are CW
or CCW paths from all concave vertices to out, eventually all the
particles will be drained. This holds no matter how complicated the
draining graph becomes.

3 Graph Construction

In the previous section, we have shown that we can solve the general
draining problem by considering the limit case that each water trap

Figure 6: (a) concave vertex v. (b) ei and the corresponding Hi.
Gravity direction ga never causes a water trap at v, but gb may
cause a water trap at v. (c) The cross section of (b) including ga

and gb.

Figure 7: (a) concave vertex v. (b) The corresponding Hi and Tv .

consists of a single water particle and the corresponding transitions
using a draining graph. In this section, given a 3D geometric model
and arbitrary 3D rotation axis as input, we explain how we construct
the corresponding draining graph.

3.1 Graph Nodes

The first step in constructing a draining graph is to determine its
nodes, that is, to find the concave vertices. We define the three
types of vertices (convex, concave, and saddle) as follows:

Vertex classification Given a vertex v, letting vale(v) be its va-
lence, v is either convex or concave if there is a unit vector d such
that, for all the adjacent vertices wi of v (i = 1, 2, · · · , vale(v)),
(wi − v) · d < 0 (i.e. v is a locally extreme vertex). If there is no
such d, v is a saddle vertex.

Letting ε be a positive infinitesimal number, if a point p = v + εd
is inside of the given geometry, v is a concave vertex. Otherwise, v
is a convex vertex.

3.2 Graph Edges

Edges of a draining graph are set according to the transitions of
water particles when the geometry is rotated around a given rotation
axis. Let Vc be the set of concave vertices. First, for each concave
vertex v ∈ Vc, we describe all gravity directions such that a water
particle could be trapped at v. Then, we explain how to find the
two gravity directions (gCW and gCCW) at which a trapped water
particle at v flows out when rotating clockwise or counterclockwise
around the given axis. After finding these two gravity directions,
for each of them, we find the concave vertex into which a water
particle flowing out will settle by tracing the particle’s path along
geometric features (vertices, edges, and triangles).

Figure 8: We describe any rotation axis r = (rx, ry, rz) by two
variables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where θ is the
azimuthal angle in the xz-plane from the z-axis and φ is the polar
angle from the xz-plane.

3.2.1 Gravity direction causing water trap at a concave ver-
tex

In this subsection, we describe all gravity directions such that a wa-
ter particle may be trapped at v, representing the gravity directions
as points on the Gaussian sphere (a sphere whose radius is one and
center is at the origin).

For each concave vertex v ∈ Vc, let wi be a member of the set
of adjacent vertices of v and let ei be the vector from v to wi (i.e.
ei = wi− v) (see Figure 6 (a)). For each ei, we define a half-space
Hi of directions on the Gaussian sphere Hi = {p | ei · (p − v) ≤
0, ‖p− v‖ = 1}. Figure 6 (b) shows a specific example. A gravity
direction not in Hi does not cause a water trap at v. On the other
hand, a gravity direction in Hi drags a water particle in the direction
from wi to v and may cause a water trap at v. For example, in
Figure 6 (b) and (c), the gravity direction ga never causes a water
trap at v, but gb may cause a water trap at v.

We define the space Tv in 3D as Tv =
⋂

i Hi (see Figure 7). Then,
a gravity direction g in Tv potentially causes a water trap at v. On
the other hand, as Tv =

⋂
i Hi =

⋃
i Hi suggests, g in at least one

of Hi does not cause a water trap at v.

To construct the draining graph, we need to determine, for each
concave vertex v ∈ Vc, in which gravity directions the currently
trapped water particle at v flows out when rotating clockwise and
counterclockwise rotation around the given axis. These gravity di-
rections correspond to points on the boundary of Tv . To find these
gravity directions, given a rotation axis, consider first rotating the
input geometry such that the rotation axis coincides with the z-axis
(setting the coordinate system so that the z-axis is horizontal, paral-
lel to the ground). Then, possible gravity directions are confined in
the xy-plane because a gravity direction and a rotation axis are al-
ways orthogonal. In this configuration, any gravity direction g can
be expressed as a point on a unit circle in the xy-plane with center
(0, 0) (i.e. x2 + y2 = 1). This xy-plane Gaussian circle is the
intersection between the Gaussian sphere and the xy-plane.

We can describe any rotation axis r = (rx, ry, rz) by two variables
θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where θ is the azimuthal
angle in the xz-plane from the z-axis and φ is the polar angle from
the xz-plane as shown in Figure 8. Using these parameters, the
components of r can be expressed as rx = cos φ sin θ, ry = sin φ,
and rz = cos φ cos θ. Then, by multiplying each vertex by the
matrix R where

Figure 9: (a) The relationship between the Gaussian sphere and
the xy-plane Gaussian circle. (b) The relationship between Hi and
Hi(xy). (c) The relationship between Tv and Tv(xy).

R =




cos θ 0 − sin θ
− sin θ sin φ cos φ − cos θ sin φ
sin θ cos φ sin φ cos θ cos φ


 ,

we can align the rotation axis to the z-axis.

Rotating the input geometry around the rotation axis is equivalent
to fixing the geometry and moving the gravity direction on the xy-
plane Gaussian circle. Given v ∈ Vc, suppose that a gravity direc-
tion g is currently in Tv and a water particle is trapped at v. As we
move g on the Gaussian circle, when g hits the boundary of Tv , the
trapped water particle at v flows out. If Tv does not intersect with
the xy-plane, water is never trapped at v with the given rotation
axis.

As shown in Figure 7 (b), Tv is bounded by a set of great circular
arcs on the Gaussian sphere. If the xy-plane intersects with Tv , it
intersects its boundary at two points because Tv is convex. These
two points correspond to the gravity direction at which the trapped
water particle at v flows out when we rotate clockwise and coun-
terclockwise. Since Tv =

⋂
i Hi, each of the arcs is defined by the

boundary of an Hi. The two edges (i.e. the ei corresponding to the
Hi) that define the boundary of Tv intersecting with the xy-plane
are the ones the water particle flows out through.

For the actual calculation to find the edges through which trapped
water flows out and the corresponding gravity directions, we do not
have to construct Tv in its entirety since the gravity directions are
confined in the xy-plane; constructing the portion of Tv intersecting
with the xy-plane is sufficient. Call this portion of Tv defined on
the xy-plane Gaussian circle Tv(xy) (see Figure 9). Each of the
boundary points of Tv(xy) is defined by the intersection between the
xy-plane Gaussian circle and the boundary of one of the Hi because
Tv(xy) =

⋂
i Hi(xy) where Hi(xy) is the intersection between Hi

and the xy-plane 1 . The appendix describes how to compute the
boundary of Hi(xy).

As shown in Figure 9 (c) and Figure 10 (a), we let gCW be the
point on the Gaussian circle bounding Tv(xy) rotating clockwise
(when seen from +∞ on the z-axis – the rotation axis) and gCCW

the point on the Gaussian circle bounding Tv(xy) rotating counter-
clockwise. Let eCW and eCCW be the edges defining gCW and
gCCW respectively (recall that Hi is defined by edge ei). Suppose
that a water particle is trapped at v ∈ Vc, that is, g is in Tv(xy).
Once the gravity direction coincides with gCW as the geometry is

1Tv(xy) = Tv
⋂

xy = (
⋂

i Hi)
⋂

xy =
⋂

i(Hi
⋂

xy) =
⋂

i Hi(xy)

where xy is the xy-plane.

Figure 10: (a) gCW , gCCW , and Tv(xy) on the Gaussian circle.
(b)-(e) Updating gCW , gCCW , and Tv(xy) when a new Hi(xy) is
introduced.

rotated clockwise around the axis, the trapped water particle flows
out along edge eCW . In a similar manner, once the gravity di-
rection coincides with gCCW under counterclockwise rotation, the
trapped water particle flows out along edge eCCW . We compute
the boundary points of Tv(xy), that is, gCW and gCCW , and the
corresponding eCW and eCCW incrementally as follows.

Initially, gCW and gCCW are set to the two corresponding bound-
ary points of H1(xy), and eCW and eCCW are both set to e1. Then,
for each i (i = 2, 3, · · · , vale(v)), if necessary we update gCW

and gCCW , that is, the boundaries of Tv(xy), and eCW and eCCW

as follows.

For each i, if neither of the gCW or gCCW calculated thus far are
in Hi(xy), Tv(xy) is empty (Figure 10 (b)). On the other hand,
if both gCW and gCCW are in Hi(xy), we do not have to update
Tv(xy) (Figure 10 (c)). When one of gCW and gCCW is not in
Hi(xy), one of the boundary points of Hi(xy) is in Tv(xy) (let this
be r). If gCW is not in Hi(xy), we set r to gCW and ei to eCW

(Figure 10 (d)). If gCCW is not in Hi(xy), we set r to gCCW and
ei to eCCW (Figure 10 (e)). After performing this update for each
ei (i = 2, 3, · · · , vale(v)), gCW and gCCW will be the points
bounding Tv(xy).

3.2.2 Concave vertex where trapped water flowing out set-
tles

In the previous subsection, for each concave vertex v ∈ Vc,
we showed how we compute the two gravity directions when the
trapped water particle at v flows out under rotation around the given
axis, and the two corresponding edges along which the trapped wa-
ter flows. Now, we describe how to determine which concave ver-
tex the water particle flowing out from v settles in (or if it exits the
geometry). Given the gravity direction and outflow edge, we deter-
mine it by tracing the path of the water particle, assuming that the
particle always follows the path such that the gravity force works
at a maximum (i.e. take the possible path such that the angle be-
tween the vector representing the path and the gravity direction is
minimized).

We only describe the case when we rotate the geometry clock-
wise because the same procedure works for the counterclockwise
case. Let the concave vertex where the water particle settles un-
der clockwise rotation be vs(CW) and under counterclockwise ro-
tation be vs(CCW). For the sake of simplicity of notation, we let

vs
def
= vs(CW) and g

def
= gCW for a moment. Given a vertex

v, let wi be a member of the set of adjacent vertices of v and ei

be the vector from v to wi whose length is normalized, that is,
ei = (wi − v)/‖wi − v‖ (i = 1, 2, · · · , vale(v)). We also de-
fine proj(t) as the projection of gravity vector g onto the plane of

Figure 11: Transition cases of a water particle under gravity on
various geometric shapes. (a)(b)(c) Possible movements from a ver-
tex. (d) Movement when a particle drops vertically. (e)(f) Possible
movements from a ridge edge. (g)(h) Possible movements from a
valley edge.

triangle t; thus, for triangle t’s normal vector nt, we can calculate
proj(t) = (I − ntnt

T)g. The three cases of a particle leaving a
vertex and falling through space, traveling along an edge, or trav-
eling along edges perpendicular to g are handled by Procedure 1:
TraceFromVertex (Figure 11 (a)(b)(c)). The three cases for a par-
ticle leaving a location in the middle of an edge and falling through
space, traveling along the face of a triangle, or traveling along an
edge are handled by Procedure 4: TraceFromEdge (Figure 11
(e)(f)(g)(h)). Procedure 2: ParticleDrop and Procedure 3: Find-
NextEdge handle the transitions between these states. We outline
the logic below; the corresponding detailed pseudocode for each
subroutine is shown in Algorithm 1, 2, 3, and 4.

First, we initialize vs with the endpoint of eCW that is not v. Then,
starting from Procedure 1, we update vs if necessary by tracking
the particle location, assuming that the only relevant force applied
to water particles is the gravity force g.

1. TraceFromVertex

• If a point vs + εg (ε is a positive infinitesimal num-
ber) is outside of the geometry, the water particle falls
down parallel to g from vs (Figure 11 (a).). To simulate
this, we shoot a half-ray vs + γg (where γ is a positive
scalar). Go to 2.

• Otherwise, for each ei of vs, we compute ei · g. We
define m = arg maxi(ei · g) (i.e. ∀i, em · g ≥ ei · g),

– if em · g > 0, we set the other endpoint of em to
vs. Go to 1. (Figure 11 (b).)

– if em ·g = 0 (g is on the boundary of Tvs(xy)) , we
cannot decide whether the water particle moves to
another vertex or settles at vs by looking only at
local information at vs (Figure 11 (c).). Hence,
we try to find a vertex vfo which has at least one
ej such that ej · g > 0 by traversing only edges
perpendicular to g.

∗ if any such vfo is found, we set vs to the vfo

with maximum ej · g value. Go to 1.

∗ otherwise, the water particle settles at vs.
Done.

Algorithm 1 TraceFromVertex
if vs + εg is outside of the geometry then

ParticleDrop(vs + γg)
else

m ← arg maxi(ei · g)
if em · g > 0 then

vs ← wm

TraceFromVertex()
else if em · g = 0 then

Queue q
q.enqueue(vs)
max val ← 0

while q.isEmpty() == false do
vtemp ← q.dequeue()
for j = 1 to vale(vtemp) do

if wj has not been in q yet then
if ej · g > max val then

vs ← wj

max val ← ej · g
else if ej · g = 0 then

q.enqueue(wj)
end if

end if
end for

end while
if max val > 0 then

TraceFromVertex()
end if

end if
end if

– if em · g < 0 (g is in Tvs(xy)), the water particle
flowing out from v settles at vs. Done.

2. ParticleDrop

• If the ray does not hit any triangles of the input geom-
etry, the water particle exits the geometry; vs is set to
out. Done.

• Otherwise, letting the triangle the ray hits be tcur and
the point the ray hits be pcur , Go to 3. (Figure 11 (d).)

3. FindNextEdge

• We find the edge of tcur such that, letting the two end-
points of the edge be va and vb, there exist scalar values
α and β that satisfy pcur+proj(tcur)α = va(1− β) +
vbβ, α > 0, and 0 ≤ β ≤ 1.

– if β = 0, assign va to vs. Go to 1.

– if β = 1, assign vb to vs. Go to 1.

– if 0 < β < 1, let this intersecting edge be ecur , the
triangle across ecur be tadj , and pcur = va(1 −
β) + vbβ. Go to 4.

4. TraceFromEdge

• If ecur is a ridge edge, letting the normal vector of tadj

be nadj ,

– if nadj · g ≥ 0, the water particle falls down; we
shoot a half-ray pcur + γg (where γ is a positive
scalar). Go to 2. (Figure 11 (e).)

Algorithm 2 ParticleDrop
Input: half-ray h Ray
if half-ray h Ray hits a triangle tcur then

pcur ← point where h Ray intersects tcur

FindNextEdge(tcur , pcur)
else

vs ← out
end if

Algorithm 3 FindNextEdge
Input: triangle tcur , current point pcur

for all three edges ei of tcur (i = 1, 2, 3) do
va ← one endpoint of ei

vb ← other endpoint of ei

Solve for α and β s.t. pcur+proj(tcur)α = va(1− β) + vbβ
if α > 0 then

if β = 0 then
vs ← va

TraceFromVertex()
break

else if β = 1 then
vs ← vb

TraceFromVertex()
break

else if 0 < β < 1 then
tadj ← triangle across ecur

pcur ← va(1− β) + vbβ
TraceFromEdge(ei, tadj , pcur)
break

end if
end if

end for

– otherwise, the water particle moves on the surface
of the adjacent triangle. We set tadj to tcur . Go to
3. (Figure 11 (f).)

• Otherwise (ecur is a valley edge), letting the two end-
points of ecur be va and vb, and the vertex of tadj that
is neither va nor vb be vc,

– if va ·g < vc ·g and vb ·g < vc ·g, the water particle
moves on the surface of the adjacent triangle. We
set tadj to tcur . Go to 3. (Figure 11 (g).)

– otherwise (Figure 11 (h).),

∗ if va · g > vb · g, set va to vs. Go to 1.

∗ otherwise, set vb to vs. Go to 1.

We repeat this procedure for each v until we find vs such that g is
in Tvs(xy), or g is on the boundary of Tvs(xy) and vfo is not found,
or vs is set to out.

For each concave vertex v ∈ Vc, we connect the corresponding
node to the node corresponding to vs(CW) by an edge labeled CW
and to the node corresponding to vs(CCW) by an edge labeled
CCW . Note that the ray tracing performance in Procedure 2 will
be very expensive for large inputs unless we use a bounding volume
hierarchy (BVH) to limit the number of triangles tested. We used a
kd-tree for the BVH in our implementation.

Algorithm 4 TraceFromEdge
Input: current edge ecur , adjacent triangle tadj , current point
pcur

if ecur is a ridge edge then
if nadj · g ≥ 0 then

ParticleDrop(pcur + γg)
else

FindNextEdge(tadj , pcur)
end if

else
(* ecur is a valley edge *)
va ← one endpoint of ecur

vb ← other endpoint of ecur

vc ← vertex of tadj that is neither va nor vb

if va · g < vc · g and vb · g < vc · g then
FindNextEdge(tadj , pcur)

else
if va · g > vb · g then

vs ← va

TraceFromVertex()
else

vs ← vb

TraceFromVertex()
end if

end if
end if

4 Checking Drainability

Now, using the draining graph constructed, we test whether or not a
rotation around a given rotation axis can completely drain trapped
water. For each concave vertex v ∈ Vc, if there is a path from the
corresponding node to the out node in the draining graph, we can
drain water trapped at v by rotating the input geometry around this
rotation axis. Note that when we rotate the geometry clockwise, we
can use only edges labeled CW , and when we rotate counterclock-
wise, we can use only edges labeled CCW .

4.1 Checking Procedure

Letting the number of concave vertices be n = |Vc|, if we take a
naive approach, we may have to trace n nodes from each concave
vertex v ∈ Vc in the worst case. Therefore, the total running time
becomes O(n2). However, we observe that if there is a path from
one node to the out node, it means that there is also a path from the
intermediate nodes on this path to the out node. For example, in
Figure 3, if we find a path from A through B, C, and D to out, we
know that there is also a path from B, through C and D to out, and
so on.

Based on this observation, we can improve the running time through
the following procedure. Suppose we rotate the geometry in a
clockwise direction. Then, trapped water particles at the concave
vertices whose corresponding nodes are directly connected to the
out node by the edges labeled as CW can be drained. Let the set of
these nodes be Sn. Next, consider trapped water particles at con-
cave vertices whose corresponding nodes are directly connected to
the nodes in Sn by edges labeled as CW ; these can be drained as
well. We add these nodes to Sn, and continue recursively. This
recursion stops when all the nodes connecting to at least one of the
nodes in Sn by the edges labeled as CW are in Sn. Then, after the
recursion stops, if |Sn| = n, we can guarantee that trapped water
particles at all of the concave vertices are completely drained by a
rotation around the given rotation axis. Through this approach, we
do not have to check the same node more than once. Therefore, the

(a) (b) (c)

Figure 12: We applied our theory to a simple mechanical work-
piece shown in (a). The three sections indicated in (b) are shown in
(c).

(a) CW (b) CCW

(c)

Figure 13: Whether or not a rotation around a given axis (θ, φ)
completely drains the workpiece (a) under CW and (b) CCW ro-
tation. (c) The configurations of the workpiece when φ = 0 and
θ = 170◦, 240◦, 350◦, and 60◦ that are the limits in the φ = 0
plane of whether the rotation axis drains the workpiece or not. We
can see that the angle between the x-axis and the outlet closer to
the x-axis is the same for all four cases.

time complexity becomes O(n).

5 Results

We first visualize the analysis output for two sample parts, one sim-
ple and one complex, and then discuss the performance.

5.1 Output

We first show our output graphically for the simple mechanical part
shown in Figure 12(a). Figure 12(b) indicates the locations of the
three cross-sections shown in Figure 12(c), revealing an inside void
of the workpiece where water can be trapped. Figure 13 (a) and (b)
plot whether or not a rotation around a given axis (θ, φ) completely
drains the workpiece under CW and CCW rotation respectively. To
verify these results, we show some representative configurations in
Figure 13(c) for the CW case. All these configurations are when
φ = 0 (corresponding to rotation axes in the xz plane) and viewed
from +∞ on the y-axis; therefore, the corresponding rotation axis
is horizontal, in the plane of the paper. If we fix φ = 0, when
170◦ ≤ θ ≤ 240◦ and 350◦ ≤ θ ≤ 420◦(= 60◦), we cannot drain
the workpiece as shown in Figure 13(a). The four configurations
shown in Figure 13(c) are set at these four limits. Notice that the
angle between the x-axis and the outlet closer to the x-axis is the

(a)

(b)

Figure 14: Some representative results. (a) θ = 0◦, φ = 0◦.
(b) θ = 230◦, φ = 30◦. For both (a) and (b), the rotation axis
is set perpendicular to the paper for the left and center figures.
The right figure is a view from a different angle. For the center
and right figures, the vertices shown in blue are concave vertices
such that once a water particle is trapped there, it will never exit
the workpiece when we rotate it around the corresponding rotation
axis.

same for all four cases; this angle is a threshold for whether or
not a given rotation axis works for draining. This shows that our
algorithm can capture this threshold.

Figure 14 shows representative results of two additional CW cases
((a) θ = 0◦, φ = 0◦, (b) θ = 230◦, φ = 30◦). For the center and
right figures, the vertices shown in blue are concave vertices where
a water trap is potentially formed when we rotate the workpiece
around the corresponding rotation axis; we cannot drain the work-
piece. Figure 15 shows a result when θ = 30◦ and φ = 60◦. This
is an example where CW rotation works but CCW rotation does not
work (see Figure 13 (a) and (b)). Figure 16 shows the correspond-
ing transition of a water particle when we rotate (a) clockwise and
(b) counterclockwise around this rotation axis.

To get a sense of how sensitive our algorithm is to the coarse-
ness of the triangulation, we compared these results to those on
a fine tessellation of the same model. We found only slight shifts in
the boundary between the drainable and non-drainable regions (see
Figure 17).

We also applied our algorithm to a complex automotive model
shown in Figure 18(a). Our algorithm can quickly compute whether
or not a given rotation axis will drain the workpiece even when in-
ternal passages (Figure 18(b)(c)) are very complex, as in this ex-
ample. Figure 18(d) and (e) plot whether or not the indicated ro-
tation axis drains this model. Figure 18 (f) shows concave vertices
(colored blue) where a water trap is potentially formed when the
rotation axis is set to θ = 270◦, φ = 0◦. Figure 18 (g) shows the
corresponding axis-aligned magnified view.

Figure 15: θ = 30◦, φ = 60◦. With this rotation axis, CW rotation
does not drain the workpiece but CCW rotation does. The rotation
axis is set perpendicular to the paper for the left and center figures.
The right figure is a view from a different angle.

(a) (b)

Figure 16: The transition of a water particle when we rotate (a)
clockwise and (b) counterclockwise around a rotation axis θ = 30◦,
φ = 60◦. CW rotation drains the workpiece but CCW rotation does
not.

5.2 Performance

Table 1 shows the performance of our implementation on an Intel
Pentium 4 3GHz CPU with 2GB of RAM. We tested 36× 9 = 324
(sampled at every 10 degrees in both θ and φ directions) rotation
axes for each model and report the average and maximum time in
Table 1. We can see that we can test a given rotation axis very
quickly and give near-interactive feedback to designers. Note that
since we can reuse the same BVH for speeding up the ray tracing
phase, no matter how the rotation axis is changed, we did not in-
clude the preprocessing time in the times reported (recent GPU al-
gorithms for BVH construction run in less than a second for models
of similar complexity [Lauterbach et al. 2009]). The performance
bottleneck of our current implementation is the particle tracing op-
eration in the graph construction phase, so we will investigate of-
floading some of this work to the GPU in future work. We also
measured the number of function calls made to Algorithm 1-4 in
determining vs(CW) and vs(CCW) for each concave vertex v ∈ Vc.
Although the maximum number of calls is higher for the more com-
plex models, the average was similarly low, in single digits, for all
models tested.

6 Complexity Analysis

Since our ultimate goal is to find a rotation axis for a geometric
model such that when the workpiece is rotated around this axis, all
water drains, we may need to test many candidate axes. Therefore,
it is important that our testing algorithm run quickly. We now ana-
lyze the scalability of our algorithm. Vertex classification is linear
in the size of the input geometry, O(n). In the graph construction
phase, for each concave vertex v ∈ Vc, first we compute the gravity

Figure 17: Comparison of the results shown in Figure 13 (a) and
(b) with results for a finer tessellation of the same model with almost
five times the number of vertices. The results that differ are circled.

directions when the trapped water at v starts to flow out. For each
concave vertex v, this takes a constant number of operations equal
to the number of edges incident to v, so it is also in O(n). For
each concave vertex v ∈ Vc, we find the concave vertex into which
the trapped water particle flowing out from v settles. In theory, for
each v, we have to check all triangles and vertices of the geometry
to find the final location in the worst case. We are still investigating
the performance of particle tracing to construct this graph. How-
ever, from the fact that a water particle is driven by only a fixed
gravity force and the assumption that the input triangles and ver-
tices are uniformly distributed in space, in practice the number of
vertices and triangles checked are only a very small fraction of n,
reducing worst case O(n2) growth to close to linear in practice; ex-
perimental results shown in Table 1 support this. Once the graph is
constructed, the checking phase runs in O(n) time as described in
section 4.

7 Discussion and Future Work

Since this is the first research to our knowledge that addresses test-
ing a rotation axis for drainability, we have made a number of sim-
plifying assumptions to make the problem more tractable. In our
future work, we plan to test and/or relax these assumptions as we
build on this work to develop more sophisticated variations of our
algorithm. The impact of some of our assumptions must be tested
experimentally, such as ignoring the effect of viscosity. As a first
step, we can also compare our results with the output of a physics-
based approach.

Although we have shown theoretically that a rotation axis that
drains all the core particles must eventually drain the entire part,
our existing algorithm would need some modifications to calculate
how many rotations will be needed. As we showed, for a water
trap containing multiple water particles, not all water particles will
move to the same water trap that the core particle moves to. Simi-
larly, at saddle or saddle-like vertices, for the case of multiple water

particles, not all will follow the steepest descent path, as we have
assumed the core particle does. Capturing the salient behavior of
the other water trap particles, without modeling them all explicitly,
remains future work.

Ultimately, of course, we hope to move beyond testing given axes
(a sample-based approach) to finding all drainable axes (using a
configuration space approach).

8 Conclusion

In this paper, we presented a new geometric algorithm to check
whether a rotation around a given rotation axis can drain an in-
put geometry. Our proof-of-concept implementation can test input
meshes of complex industrial parts containing over 100,000 vertices
in about a second, a huge improvement compared to using com-
mercial general-purpose simulation packages that can take hours to
converge.

Acknowledgments

We would like thank Sushrut Pavanaskar for background research
on particle systems and physical simulations in computer graph-
ics and feedback on the presentation. We also would like to thank
Adarsh Krishnamurthy, Wei Li, and the anonymous reviewers for
additional valuable feedback. This material is based on work sup-
ported in part by Daimler AG, UC Discovery under Grant No.
DIG07-10224, and the National Science Foundation under Grant
No. 0621198.

References

ALOUPIS, G., CARDINAL, J., COLLETTE, S., HURTADO, F.,
LANGERMAN, S., AND O’ROURKE, J. 2008. Draining a poly-
gon - or - rolling a ball out of a polygon. In CCCG.

ARBELAEZ, D., AVILA, M., KRISHNAMURTHY, A., LI, W., YA-
SUI, Y., DORNFELD, D., AND MCMAINS, S. 2008. Clean-
ability of mechanical components. In Proceedings of 2008 NSF
Engineering Research and Innovation Conference.

AVILA, M., REICH-WEISER, C., DORNFELD, D., AND MC-
MAINS, S. 2006. Design and manufacturing for cleanability
in high performance cutting. In Proceeding of 2nd International
High Performance Cutting Conference.

BALASUBRAMANIAM, M., LAXMIPRASAD, P., SARMA, S., AND
SHAIKH, Z. 2000. Generating 5-axis NC roughing paths directly
from a tessellated representation. Computer-Aided Design 32, 4,
261 – 277.

BERGER, K. 2006. Burrs, chips and cleanness of parts - activities
and aims in the German automotive industry. In Presentation at
CIRP Working Group on Burr Formation.

BOSE, P., VAN KREVELD, M., AND TOUSSAINT, G. 1998. Filling
polyhedral molds. Computer-Aided Design 30, 4, 245 – 254.

BRADLEY, F. J., HEINEMANN, S., AND HOOPES, J. A. 1993.
A hydraulics-based/optimization methodology for gating design.
Applied Mathematical Modelling 17, 8, 406 – 414.

BRIDSON, R., AND MÜLLER-FISCHER, M. 2007. Fluid simu-
lation: Siggraph 2007 course notes. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 Courses, ACM, 1–81.

DHALIWAL, S., GUPTA, S. K., HUANG, J., AND PRIYADARSHI,
A. 2003. Algorithms for computing global accessibility cones.

Journal of Computing and Information Science in Engineering
3, 3, 200–209.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH construction on GPUs.
Eurographics Association.

LI, Y., AND FRANK, M. C. 2007. Computing non-visibility of
convex polygonal facets on the surface of a polyhedral CAD
model. Computer-Aided Design 39, 9, 732 – 744.

MÜLLER, M., STAM, J., JAMES, D., AND THÜREY, N. 2008.
Real time physics: class notes. In SIGGRAPH ’08: ACM SIG-
GRAPH 2008 classes, ACM, New York, NY, USA, 1–90.

MÜLLER-FISCHER, M., CHARYPAR, D., AND GROSS, M.
2003. Particle-based fluid simulation for interactive appli-
cations. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, Eu-
rographics Association, 154–159.

MÜLLER-FISCHER, M., MARK, P., MARKUS, G., RICHARD, K.,
AND MARTIN, W. 2007. Physics-based animation. In Point-
Based Graphics, M. Gross and H. Pfister, Eds. Morgan Kauf-
mann, Burlington, 340 – 387.

NGUYEN, H. 2007. Gpu gems 3. Addison-Wesley Professional.

TANG, K., CHEN, L.-L., AND CHOU, S.-Y. 1998. Optimal work-
piece setups for 4-axis numerical control machining based on
machinability. Computers in Industry 37, 1, 27 – 41.

WOO, T. C. 1994. Visibility maps and spherical algorithms.
Computer-Aided Design 26, 1.

Appendix

Boundary of Hi(xy)

The boundary of Hi(xy) is defined by the intersection points be-
tween the boundary of Hi and the xy-plane Gaussian circle. Let-
ting the intersection point be I = (Ix, Iy, 0), since it is con-
fined on the Gaussian circle, Ix

2 + Iy
2 = 1. From the defini-

tion, the boundary of Hi is defined by the plane perpendicular to
ei. Letting ei = ((ei)x, (ei)y, (ei)z), this plane is expressed as
(ei)xx + (ei)yy + (ei)zz = 0. Then, assuming ((ei)x 6= 0), we
can solve for Ix,

(ei)x(Ix) + (ei)y(Iy) + (ei)z(0) = 0

Ix = − (ei)y

(ei)x
Iy ((ei)x 6= 0)

Substituting into Ix
2 + Iy

2 = 1,

(
(ei)y

(ei)x
)2Iy

2 + Iy
2 = 1

(
(ei)y

(ei)x
)2 + 1)Iy

2 = 1

Iy = ±
√

1

(
(ei)y
(ei)x

)2+1
((ei)x 6= 0)

Note that the boundary of Hi and the Gaussian circle intersect at
two points.

When (ei)x = 0, if (ei)y 6= 0, Ix = ±1 and Iy = 0, and if
(ei)y = 0 as well, the entire xy-plane Gaussian circle defines the
boundary of Hi.

Table 1: The required time to test one rotation axis and the number of function calls to determine vs(CW) and vs(CCW) for each concave
vertex v ∈ Vc.

triangles vertices concave vertices average time
(sec)

max time (sec) average no. of
function calls

max no. of
function calls

3,572 1,796 428 0.0048 0.047 4.34 66

12,0004 59,920 18,203 0.335 0.407 6.67 127

160,312 79,982 31,829 0.590 0.953 5.01 187

289,956 144,546 57,412 1.10 2.14 6.55 416

(a) (b) (c)

(d) (e)

(f) (g)

Figure 18: (a) Cylinder head model (b)(c) Cross sections revealing the internal passages of the model shown in (a). (d) Plot of whether
or not rotation around a given rotation axis completely drains the workpiece under CW rotation and (e) CCW rotation. (f) The concave
vertices (colored blue) such that once a water particle is trapped there, it will never exit the workpiece when we rotate it around rotation axis
θ = 270◦, φ = 0◦, which is set horizontally in the plane of the paper. (g) Magnified view of the region indicated in (f).

