(CS270 project report:
Find an axis of rotation for drainage of workpieces

Yusuke Yasui

a. ~Cen &ma.bd./&v‘ﬁ aewd
aﬂ%m ;
1 Introduction

When we machine a workpiece by cutting processes, the removed surface of the workpiece forms a chip. To
remove such chips from the surface of the workpiece, a water jet is used. The water jet can successfully remove
the chips; however, if the geometry of the workpiece has concave regions, the water ejected from the water
jet nozzle may be trapped within the workpiece. We would like to drain such trapped water by rotating the
workpiece.

Due to the limitation of our device, we are allowed to choose only one rotation axis and to rotate in one
orientation around the axis. Our goal is to find a rotation axis for a given part geometry such that when the
part is rotated around this axis, all water drains from all voids of the part. As a first step toward this goal, we
propose an algorithm to check whether a rotation around a given axis can drain all trapped water or not in this

report.

2 Overview

2.1 Observation

Our input geometry is given as a set of triangles i.e. polygonal mesh. A polygonal mesh consists of three kinds of
geometric objects, that is, vertices, edges, and triangles. The vertices are further classified into concave vertices,
convex vertices, and saddle vertices. The key observation for this problem is that water traps are always caused
by concave vertices. Water traps are not caused by triangles or edges because water particles are free to move
on them. Among the three types of vertices, only a concave vertex causes a water trap because it can hold
water particles while a convex vertex and a saddle vertex cannot. Based on this, our goal is to drain all the
concave vertices of an input geometry since it is equivalent to drain from all voids of the part.

2.2 Assumption

We assume that a rotation is slow enough so that water particles move only by gravity force (assuming that
any other forces such as friction force are negligible). When we rotate an input geometry from one orientation
to another orientation, the water particles move from one concave vertex to another concave vertex (or may go
outside of the geometry). We assume that once a trapped water particle starts to take off a current concave

vertex, it moves to another concave vertex instantaneously.

2.3 Approach

Based on these observations and assumptions, we construct a graph whose nodes correspond to the concave
vertices. The edges of the graph are set between nodes if the trapped water particle at one corresponding
concave vertex moves to another corresponding concave vertex in a specific gravity direction. The example in
2D is shown in Figure 1.

For each concave vertex, we set the corresponding node in the graph. Then, we compute the gravity directions
when the trapped water starts to flow out and the concave vertices the trapped water flowing out settles. These
gravity directions are shown next to each node in Figure 1. As shown in Figure 1, the edges in a graph are
labeled as CW or CCW. When we rotate the geometry around the given rotation axis in clockwise (respectively,
counterclockwise) rotation, trapped water particles move from one concave vertex to another concave vertex

through only the edges labeled as CW (respectively, CCW).

Figure 1: Geometry and the corresponding graph in 2D. The diagram next to each node shows the gravity
directions which move water particles trapped at the corresponding concave vertex to the other concave vertices.
When a current gravity direction is in the red part bounded by these gravity directions, water particles may be
trapped at the corresponding concave vertex.

R

Figure 2: The actual drainage by a rotation corresponding to the path “A — B — C — D — out” in Figure 1.

For each concave vertex, if there is a path consisting of edges with the specified orientation label from the
corresponding node to the node labeled as “outside-of-geometry”, it is equivalent to the fact that we can drain
the trapped water at the concave vertex through concave vertices corresponding to the nodes on the path by
rotating around a given axis. For example, there is a path “4 — B — C — D — out” in Figure 1 and this
path corresponds to a drainage shown in Figure 2. There is also a path “A — D — out”. But we cannot drain
using this path because we need counterclockwise rotation from A to D and clockwise rotation from D to out.
This violates our restriction that we can rotate around an axis in one orientation.

Even in 3D, the change of a gravity direction is confined in 2D plane and therefore the similar approach
works.

3 Graph Construction

In this section, we describe how to construct a graph from an input geometry.

3.1 Gravity direction causing water trap at a concave vertex

Any gravity direction g can be expressed as a point on a sphere whose radius is one and center is at origin.
This sphere is called the gaussian sphere.

Let V. be the set of concave vertices. For each concave vertex v € Vg, let w; be a member of the adjacent
vertices of v and e; be the vector from v to w; (i.e. &; = w;—v) (see Figure 3 (a)). For each e;, we define a space H;
on the gaussian sphere consisting of points p such that e;-(p—v) < 0. (i.e. Hi={p| ei-(p—v) <0,|p—v| =1}).
Figure 3 (b) shows the specific example. A gravity direction not in H; drags a water particle to the direction
from v to w; and does not cause the water trap at v. On the other hand, a gravity direction in H; drags a water
particle to the direction from w; to v and may cause a water trap at v. For example, in Figure 3 (c), gravity
direction g, never causes a water trap at v, but g, may cause a water trap at v.

We define a space T, = [); Hi. Figure 4 shows the specific example of T,. Then, a gravity direction g in T},
potentially causes a water trap at v. On the other hand, as T,=MNH: = U‘Tf; suggests, ¢ in at least one of
H; does not cause a water trap at v.

To construct a graph shown in Figure 1, we would like to know, for each concave vertex v € V,, in which
gravity direction the currently trapped water at v starts to flow out. These gravity directions correspond to the
points on the boundary of T.

(©

Figure 3: (a) concave vertex v. (b) e; and the corresponding H;. (c) Gravity direction g, never causes a water
trap at v, but gy may cause a water trap at v.

3.2 Which gravity direction makes the trapped water flows out

Given a rotation axis, we first rotate the input geometry such that the rotation axis coincides with the z-axis.
Then, possible gravity directions are confined in the xy-plane because a gravity direction and a rotation axis are
always orthogonal. In this configuration, any gravity direction g can be expressed as a point on a circle in the
xy-plane with center (0, 0) (i.e. % +y? = 1). This circle is called the gaussian circle, which is the intersection
between the gaussian sphere and the xy-plane.

Rotating the input geometry around the rotation axis is equivalent to fixing the geometry and moving the
gravity direction on the gaussian circle. Given v € V., suppose that gravity direction g is currently in T, and
water is trapped at v. As we move g on the gaussian circle, when g hit the boundary of T, the trapped water
at v starts to flow out. If T}, does not intersect with the xy-plane, water is never trapped at v with the given
rotation axis.

Tv= Hln Hg n H3

(a) ()

Figure 4: (a) concave vertex v. (b) The corresponding H; and T,,.

3.2.1 Edge through which water flows out and the corresponding gravity direction

As Figure 4 (b) shows, T, is bounded by a set of arcs on the gaussian sphere. If the xy-plane intersects with 7},
they intersect at two points because T, is convex. Each of these two points corresponds to the gravity direction
which makes the trapped water at v flows out when we rotate in clockwise and in counterclockwise, respectively.

Since T, =); Hi, each of the arcs is defined by the boundary of H;. The edge which defines the boundary
of H; where each of these intersection points is found is the one the water flows out through.

For the actual calculation to find the edges through which trapped water flows out and the corresponding
gravity directions, we do not have to construct entire T}, since the gravity directions are confined in the xy-plane;
constructing the part of T, intersecting with the xy-plane is enough. Let this part of T, be Tytzy)- Tu(ay) is
defined on the gaussian circle.

Each of the boundary points of T}, is defined by the intersection between the gaussian circle and one of
the boundary of H; because, as T, =), Hi, Ty(zy) =); H;(;,) where Hj(., is the intersection between H; and
the xy-plane. How to compute the boundary of Hj(zy) is in Appendix.

As shown in Figure 5 (a), letting gow be the point on the gaussian circle bounding T, v(zy) 0 a clockwise
direction, goow the point on the gaussian circle bounding Ty(zy) in a counterclockwise direction, and ecy and
ecow be the edge defining gow and goow (recall that H; is defined by edge e;), we compute the boundary
points of T, as follow.

Initially, gcw and gcow are set to the boundary of Hi(zy) and ecw and ecow are set to e;. Then, for
eachi (i = 2,3, .-, “valence of v"), we update gow and gocw, that is, the boundaries of Ty(zy), and ecw and
eccow if necessary as follow.

For each i, if both gow and goew are not in Hy(zy), Ty(zy) is empty (Figure 5 (b)). On the other hand,
if both gew and gccw are in Hy(,y), we do not have to update T, (zy) (Figure 5 (c)). When one of gow and
gccw is not in Hj(z,, one of the boundary points of H;(,) is in T}y (let this be r). If gow is not in Hiusns
we set 1 to gow and e; to ecw (Figure 5 (d)). If gcow is not in Hy(,,), we set r to gocw and e; to ecow
(Figure 5 (e)). After performing this update for each e; (i = 2,3,---, “valence of v"), gow and gocw become
the points bounding T, (,).

When water is trapped at v, if the gravity direction coincides with gow in a clockwise rotation, the trapped
water starts to flow out through edge ecw . In a similar manner, if the gravity direction coincides with Joow
in a counterclockwise rotation, the trapped water starts to flow out through edge ecow.

Te™

{ { { {
g, Beow
=)
(a) gQg« Q‘ws@
¢ T T, o
(e)

(b) () (d

Figure 5: (a) gow, gccw, and Ty(zy) on the gaussian circle. (b)-(e) How to update gcw, gcow, and Ty(zy)
when new Hj(yy) is introduced.

3.3 Concave vertex where trapped water flowing out settles

In the previous subsection, for each concave vertex v € V., we computed the gravity directions when the trapped
water at v starts to flow out and the edges through which the trapped water flows out at this time. In this
subsection, we describe how to determine which concave vertex the water flowing out from v settles (or goes
outside of the geometry) with these information.

For each concave vertex v, we have to determine which concave vertex the water particle flowing out settles
for two cases when we rotate the geometry in clockwise and in counterclockwise. Let the concave vertex where
the water particle settles in clockwise rotation be vycw) and in counterclockwise rotation be vycow). We only
describe the case when we rotate the geometry in clockwise here because the similar procedure works for the
counterclockwise case.

3.3.1 Algorithm

For sake of simplicity, we let v; %/ vycw) and g &ef gew for a moment.

First, we initialize v, with the endpoint of ecw which is the opposite side of v. We have assumed that a
force applied to a water particle is only gravity force. Then, we trace it as follow.

1. e If gisin Ty, (y), the water particle flowing out from v settles at vertex v;. Done.
e Otherwise, we compute n;-g where n; is a normal vector of incident face j of v¢ (j = 1,2, -, “valence of »").
— If nj - g > 0 for at least one j, the water particle falls down parallel to g (Figure 6 (a)). To
simulate this, we shoot a ray parallel to g from v;. Go to 2.
— Otherwise,

« if there is a valley edge ey incident to vy such that ey - g > 0, compute ey - g for all k and set
the endpoint of e such that ej - g becomes the largest to v,. Go to 1. (Figure 6 (b))

« if there is no such valley edges incident to v, the water particle moves on a triangle surface.
We project g onto each incident triangle t; of v;. Letting the pro jected vector onto t; be g4,

pick up the triangle #; where ||g;, || becomes the largest. Then, we find an edge of #; that the
projected vector g;, whose origin is v, intersects with. Let this edge be e, and the triangle
across e; be t,4;. Go to 3. (Figure 6 (c))

2. e If the ray does not hit any triangles of the input geometry, the water particle falling down goes
outside of the input geometry, that is, be drained; v; is set to out. Done.

Otherwise, letting a triangle the ray hits be tn; and a point the ray hits be p;s, we project g onto
thit and find an edge of ty; that the projected vector whose origin is pp;; intersects with. Let this
edge be e; and the triangle across e; be t,4;. Go to 3. (Figure 6 (d))
3. e Letting a normal vector of t,4; be nq45,

® if nag; - g > 0, the water particle falls down; we shoot a ray. Go to 2. (Figure 6 (e))

e Otherwise,
— if e; is a valley edge, letting the two endpoints of e; be v, and v, if (va —vp) - g > 0, set v, to

vy; otherwise, set vy to v;. Go to 1. (Figure 6 (f))

— Otherwise, we project g onto taq; and find an edge of o4 that the projected vector intersects
with. Replace e; with this edge and t,4 with the triangle across this edge. Go to 3. (Figure 6

(8)

We repeat this series of the procedures for each v until we can find v; such that g is in Ty, (zy) OF v is set to out.

(e) ® (@

Figure 6: Movement of a water particle by gravity force on various geometric shapes.

3.4 Graph completes

For each concave vertex v € V;, we set the corresponding node ny in the graph. Then, we connect the node n,
and the node corresponding to vycw) by an edge and label the edge as CW. Also, we connect the node ny and
the node corresponding to vyccw) by an edge and label the edge as CCW. Figure 1 is the specific example.

4 Checking

Now, using the graph constructed, we test whether a rotation around a given rotation axis can completely drain
trapped water. For each concave vertex v € V., if there is a path from the corresponding node to out node in
the graph, we can drain water trapped at v by rotating the input geometry around a given rotation axis. Note
that when we rotate the geometry in clockwise, we can use only edges labeled as CW, and when we rotate in
counterclockwise, we can use only edges labeled as CCW.

4.1 Checking procedure

Letting the number of concave vertices be n = |V.|, if we take a naive approach, we have to trace n nodes for
each concave vertex v € V. in the worst case. Therefore, the total running time becomes O(n™). However, we
can notice that if there is a path from one node to out node (let this path be p), it means that there is also a
path from the intermediate nodes on path p to out node. For example, in Figure 1, if we find a path from A to
out through B, C, and D, we can know that there is also a path B, C, and D to oul node.

Based on this observation, we can improve this by taking the following procedure. Suppose we rotate the
geometry in clockwise orientation. Then, trapped water at the concave vertices whose corresponding nodes are
directly connected to the out node by the edges labeled as CW can be drained. Let the set of these nodes be
S,.. Then, trapped water at concave vertices whose corresponding nodes are directly connected to the nodes in
S, by edges labeled as CW can be drained as well. We put these nodes to Sn and do the same thing recursively.
This recursion stops when all the nodes connecting to at least one of the nodes in S, by the edges labeled as
CW are in S,.. Then, after the recursion stops, if |S,| = n, we can guarantee that trapped water at all of the
concave vertices is completely drained by a rotation around the given rotation axis. In this approach, we do
1ot have to check the same node twice. Therefore, the time complexity becomes O(n)

5 Discussion

We showed the algorithm to check whether we can drain trapped water by rotating around a given rotation
axis. As described in the introduction, our ultimate goal is to find a rotation axis for a given geometry such
that when the part is rotated around this axis, all water drains. We can approximately achieve this by testing
infinitely many rotation axes using the presented algorithm. Among the set of rotation axes tested, if there is
a rotation axis that can drain all trapped water, the rotation axis is what we would like to obtain.

For this, we would like to test as many rotation axes as possible to find an answer. Therefore, our testing
algorithm should run fast. We now analyze the performance of our algorithm.

In the graph construction phase, for each concave vertex v € V., first, we compute the gravity directions
when the trapped water at v starts to flow out. For each concave vertex v, this takes the number of operations
equal to the number of edges incident to v. Assuming that the number of incident edges for each concave vertex
is constant (generally, this is 6 & 3), this is done in O(n) (n is a number of concave vertices in the geometry).
Then next, for each concave vertex v € V¢, we find a concave vertex where the trapped water flowing out from
v settles. In theory, for each v, we have to check all triangles and vertices of the geometry to find it in the worst
case. In practice, we are still under investigation; however, by the fact that a water particle is driven by only
a fixed gravity force and the assumption that the input triangles and vertices are uniformly distributed in the

Space, we can expect that the number of the vertices and triangles checked is less than 10 for almost all cases.
Once the graph is constructed, the checking phase runs in O(n) as described in the previous section.

6 Conclusion

In this report, we presented the algorithm to check whether a rotation around a given rotation axis can drain
an input geometry. Using this, we can also find a rotation axis to drain a given geometry with a heuristic
approach. To make this approach be a reliable one, we would like to test as many rotation axes as possible.
Therefore, our testing algorithm must run fast. For now, the bottleneck is the particle tracing operation in
the graph construction phase. If we can guarantee that this operation runs fast, our approach becomes more
practical.

Appendix

Boundary of Hi(zy)

The boundary of H(,, is defined by the intersection points between the boundary of H; and the gaussian circle.
Letting the intersection point be I = (I, 1,,,0), since it is confined on the gaussian circle, 1,2 + Iyz = 1. From
the definition, the boundary of H; is defined by the plane perpendicular to e;. Letting e; = ((e;)., (€)y: (€:)2),
this plane is expressed as (e;).z + (ei)yy + (€i):z = 0. Then,

(ei).’l.'(l:) + (Bi)y(fy) + (ei)z({]) =0 = I, = _ﬁ]

(ei]: Y
Substituting this into 1.2 + Iyz =
(ei)yr2, 2 2 (€i)y 2 2 1
VL LA=1 (a2 VLR | e L =i e s
((e,-)._,) o ((E:’):r) My ¥ (Hl:"_ L)2 41

Note that the boundary of H; and the gaussian circle intersect at two points.

